首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present distributions of 239+240Pu, 241Am and activity ratio of 241Am/239+240Pu in surface seawater of the Peninsular Malaysia east coast were studied. The surface seawater samples were collected at 30 identified stations during the expedition conducted in 2008. 239+240Pu activity concentrations in surface seawater of the studied area were in the range of 2.33 ± 0.20–7.95 ± 0.68 mBq/m3, meanwhile 241Am activity concentrations ranged from MDA to 1.90 ± 0.23 mBq/m3. The calculated activity ratios of 241Am/239+240Pu were varied and disperse distributed with the ranged of 0.12–0.53. The relationships between anthropogenic radionuclide and oceanographic parameters such as turbidity and salinity were examined. The linearly relationships between 239+240Pu and oceanographic parameters are important for better understanding of its transport processes and behavior in the east coast of Peninsular Malaysia marine environment. Thus, the differ of distribution of 239+240Pu, 241Am and 241Am/239+240Pu in the studied area mainly due to high affinity of 239+240Pu to associate with sinking particles, mobility nature of 241Am, degree of particle reactive of both anthropogenic radionuclides, scavenging and removal process; and others.  相似文献   

2.
Summary 241Pu concentrations were calculated indirectly in different compartments of the southern Baltic ecosystem by the activity measurements of241Am isotope from the increase of the<span lang=EN-GB style='font-size:12.0pt;font-family:Symbol;mso-bidi-font-family:Symbol; mso-ansi-language:EN-GB'>b-emitting241Pu at 16-18 years after the Chernobyl accident. Enhanced levels of241Pu were observed in all analyzed samples. Maximum values (0.408 and 0.367 mBq. g-1d.w.) of the estimated241Pu concentrations were found in sediments of Internal Puck Bay and Gdańsk Bay, respectively, and in the suspended matter from water of Gdańsk Bay (77.8 mBq.g-1d.w.). The highest241Pu/239+240Pu activity ratio was found in the suspended matter (1500) and water (140). The241Pu activity of the air dust was very high in April 1986, 3643±34.3 mBq.g-1d.w., and the241Pu/239+240Pu activity ratio was 56, but the highest241Pu/239+240Pu activity ratio of the air dust was measured in August. Then the241Pu concentration in air dust decreased quickly to values similar to those before the Chernobyl accident.<span style='font-size:12.0pt'>This study provides new data for the 241Pu concentrations in various compartments of the Baltic Sea ecosystem.  相似文献   

3.
Sector field inductively coupled plasma mass spectrometry (SF-ICPMS) has been used with analysis of solution samples and laser ablation (LA) of electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent in the western USA. A large set of surface soils and attic dusts were previously collected from many locations in the states of Nevada, Utah, Arizona, and Colorado; specific samples were analyzed herein to characterize the relative contributions of stratospheric fallout vs. Nevada Test Site (NTS) plutonium. This study illustrates two different ICPMS-based analytical strategies that are successful in fingerprinting Pu in environmental soils and dusts. Two specific datasets have been generated: (1) soils are leached with HNO3-HCl, converted into electrodeposited alpha sources, counted by alpha spectrometry, then re-analyzed using laser ablation SF-ICPMS; (2) samples are completely dissolved by treatment with HNO3-HF-H3BO3, Pu fractions are prepared by extraction chromatography, and analyzed by SF-ICPMS. Optimal laser ablation and ICPMS conditions were determined for the re-analysis of archived alpha spectrometry “planchette” sources. The best ablation results were obtained using a large spot size (200 μm), a defocused beam, full repetition rate (20 Hz) and scan rate (200 μm s−1); LA-ICPMS data were collected with a rapid electrostatic sector scanning experiment. Less than 10% of the electroplated surface area is consumed in the LA-ICPMS analysis, which would allow for multiple re-analyses. Excellent agreement was found between 239+240Pu activities determined by LA-ICPMS vs. activity results obtained by alpha spectrometry for the same samples ten years earlier. LA-ICPMS atom ratios for 240Pu/239Pu and 241Pu/239Pu range from 0.038–0.132 and 0.00034–0.00168, respectively, and plot along a two-component mixing line (241Pu/239Pu = 0.013 [240Pu/239Pu] – 0.0001; r 2 = 0.971) with NTS and global fallout end-members. A rapid total dissolution procedure, followed by extraction chromatography and SF-ICPMS solution Pu analysis, generates excellent agreement with certified 239+240Pu activities for standard reference materials NIST 4350b, NIST 4353, NIST 4357, and IAEA 385. 239+240Pu activities and atom ratios determined by total dissolution reveal isotopic information in agreement with the LA-ICPMS dataset regarding the ubiquitous mixing of NTS and stratospheric fallout Pu sources in the regional environment. For several specific samples, the total dissolution method reveals that Pu is incompletely recovered by simpler HNO3-HCl leaching procedures, since some of the Pu originating from the NTS is contained in refractory siliceous particles.  相似文献   

4.
This study with sampling expeditions of marine sediment, seawater and biota were performed at 30 stations within Malaysian Exclusive Economic Zone (EEZ). A total of >400 samples were collected to determine the activity concentration of anthropogenic radionuclides (239+240Pu, 137Cs) and their activity ratio (239+240Pu/137Cs) in sediments, seawater and biota. The purpose of this study was to determine the concentration levels for these radionuclides and to evaluate any occurrence of radioactive contamination. Sediment cores were obtained using multicorer device, while water samples via co-precipitation techniques and biota was purchased from local fishermen. The activity concentrations of 239+240Pu in sediment, seawater and biota were ranged 0.21–0.45 Bq/kg dry wt., 2.33–7.95 mBq/m3 and <0.008 Bq/kg fresh wt., respectively. Meanwhile, the values of 137Cs were ranged <1.00–2.71 Bq/kg dry wt. in sediment, 3.40–5.89 Bq/m3 in seawater and <0.05–0.41 Bq/kg fresh wt. in biota, respectively. Activity ratios of 239+240Pu to 137Cs obtained seem to confirm that these artificial radioactivities were mainly due to global nuclear fallout.  相似文献   

5.
Plutonium (Pu) metal samples from an interlaboratory exchange exercise and simulated swipe samples were dated using plutonium–uranium (Pu–U) and plutonium–americium (Pu–Am). Metal data were evaluated for consistency and the swipe data against its source material. Metal ages based on 239Pu versus 235U and 240Pu versus 236U agreed to within a few percent, while the 238Pu–234U and 241Pu–241Am measurements had larger uncertainties. Swipe ages compared favorably with the material’s known history. Neptunium (237Np) analyses were examined in the context of the 241Pu–241Am–237Np system to estimate whether Np can provide insights on material from which Am, Np, and U were removed.  相似文献   

6.
Soil materials used were collected in the early 1970s at Idaho National Laboratory near the Subsurface Disposal Area (SDA). Samples from a depth of 0–4 and 4–8 cm at two different sites located on the northeast corner of the SDA perimeter were analyzed. The concentration of 234U, 235U, 236U, and 238U in soil digests were measured by mass spectrometry. Uranium isotopic composition of the soil at the two sample sites and depths is compared to previously measured concentrations of 238Pu, 239Pu, 240Pu, 241Pu, and 241Am. Implications for remediation of contaminated soils surrounding the SDA are discussed.  相似文献   

7.
A radiochemical method is described for the determination of238Pu,239(240)Pu and241Am in a single soil sample. Plutonium is separated from a HNO3 leaching solution by a Microthene-TNOA column; amcricium is coprecipitated by oxalic acid, decontaminated from polonium by a TNOA-column in HCl medium, separated from the rare earth elements by a Microthene-HDEHP column, eluted with a 0.07M DTPA+1M lactic acid solution and finally purified by a PMBP-TOPO extraction. The method supplies a good decontamination of Am and Pu from natural alpha emitters; starting from 50 g soil, the average yields were 75.1±13.4% for plutonium and 57.7±10.8% for Am.239(240)Pu,238Pu and241Am concentrations (mBq/kg) in three different kinds of soil were the following: 255, 10.4, 81.3 (uncultivated soils); 236, 11.6, 76.7 (cultivated soils); 46, 1.9, 19.8 (river sediment). The average ratios238Pu to239(240)Pu and241Am to239(240)Pu were 0.044 and 0.350, respectively.  相似文献   

8.
The simultaneous determination of multiple actinide isotopes in samples where total quantity is limited can sometimes present a unique challenge for radioanalytical chemists. In this study, re-determination of 238Pu, 239+240Pu, and 241Am for soils collected and analyzed approximately three decades ago was the goal, along with direct determination of 241Pu. The soils had been collected in the early 1970’s from a shallow land burial site for radioactive wastes called the Subsurface Disposal Area (SDA) at the Idaho National Lab (INL), analyzed for 238Pu, 239+240Pu, and 241Am, and any remaining soils after analysis had been archived and stored. We designed an approach to reanalyze the 238Pu, 239+240Pu, and 241Am and determine for the first time 241Pu using a combination of traditional and new radioanalytical methodologies. The methods used are described, along with estimates of the limits of detection for gamma-and alpha-spectrometry, and liquid scintillation counting. Comparison of our results to the earlier work documents the ingrowth of 241Am from 241Pu, and demonstrates that the total amount of 241Am activity in these soil samples is greater than would be expected due to ingrowth from 241Pu decay.  相似文献   

9.
The Intercomparison Studies Program (ISP) at the Oak Ridge National Laboratory (ORNL, Oak Ridge, TN, USA) provides natural-matrix urine quality-assurance/quality-control (QA/QC) samples to radiobioassay analysis laboratories. In 2003, a single laboratory (Los Alamos National Laboratory LANL, Los Alamos NM USA) requested a change in the test-samples provided previously by the ISP. The change was requested to evaluate measurement performance for analyses conducted using thermal-ionization mass spectrometry (TIMS). Radionuclides included 239Pu at two activity levels (75–150 μBq·sample−1 and 1200–1600 μBq·sample−1) and 238Pu (3700–7400 μBq·sample−1). In addition, 240Pu was added to the samples so that the 239+240Pu specific activity was 3700–7400 μBq·sample−1. In this paper, the results of testing during the period May, 2003 through September, 2005 are presented and discussed.  相似文献   

10.
The age of plutonium is defined as the time since the last separation of the plutonium isotopes from their daughter nuclides. In this paper, a method for age determination based on analysis of 241Pu/241Am and 240Pu/236Pu using ICP-SFMS is described. Separation of Pu and Am was performed using a solid phase extraction procedure including UTEVA, TEVA, TRU and Ln-resins. The procedure provided separation factors adequate for this purpose. Age determinations were performed on two plutonium reference solutions from the Institute for Reference Materials and Measurements, IRMM081 (239Pu) and IRMM083 (240Pu), on sediment from the Marshall Islands (reference material IAEA367) and on soil from the Trinity test site (Trinitite). The measured ages based on the 241Am/241Pu ratio corresponded well with the time since the last parent-daughter separations of all the materials. The ages derived from the 236U/240Pu ratio were in agreement for the IRMM materials, but for IAEA367 the determination of 236U was interfered by tailing from 238U, and for Trinitite the determined age was biased due to formation of 236U in the detonation of the “Gadget”.  相似文献   

11.
Ultrathin zirconium phosphate layers about 300–600 nm in thickness have been prepared on stainless steel supports. The adherence and homogeneity of the layers are sufficient. The adsorption properies in respect to alpha-emitters (239Pu and241Am) have been studied. The adsorption equilibrium is reached in half an hour and a total capacity of about 3–4 μg Pu has been estimated. Alpha-spectrometric properties of the samples have been evaluated by measuring the half-width of the239Pu main peak, which is close to the resolution ability of the detector.  相似文献   

12.
Activity concentrations and inventory for 238Pu, 239+240Pu, 241Am, 90Sr, and 137Cs in soil from Tatra Mountains of Poland are presented. Soil samples were collected using 10 cm diameter cores down to 10 cm and sliced into 3 slices. Details of the applied procedure are described with the quality assurance program. The maximum activity concentrations found for various samples were: 1782±13 Bq/kg, 17.4±0.9 Bq/kg, 3.4±0.3 Bq/kg and 84±7 Bq/kg for 137Cs, 239+240Pu, 241Am and 90Sr, respectively. The maximum cumulated deposition of 239+240Pu is 201±8 Bq/m2. The origin of radionuclides is discussed, based mostly on the observed isotopic ratio of Pu. Significant correlations were found between 239+240Pu, 241Am and 137Cs. The effective vertical migration rate seems to be in the order of: 90Sr≫Pu>Am>Cs.  相似文献   

13.
In the paper the results of 241Pu activity concentration determination in the biggest Polish rivers are presented. The analysis of more than 100 river water samples showed the Vistula and the Odra as well as three Pomeranian Rivers are important sources of 241Pu in the southern Baltic Sea. There were differences in 241Pu activities depending on season and sampling site and the plutonium contamination came mainly from the global atmospheric fallout as well as the Chernobyl accident, which is confirmed by plutonium activity ratios of 241Pu/239+240Pu and 238Pu/239+240Pu.  相似文献   

14.
Plutonium isotopic ratios have been calculated in soils contaminated by the Palomares accident which occurred in 1966 (Almería, Southeastem Spain). Contrasted techniques have been used to determine the radionuclide activities:238Pu and238+240Pu were analysed by -spectrometry prior purification on anion-exchange resins, the ratio239Pu/240Pu was estimated by -spectra deconvolution and241Pu was directly measured by liquid scintillation counting and indirectly through quantification of in-grown241Am from aged plutonium discs. The mean activity ratios238Pu/239Pu,239Pu/240Pu,241Pu/239Pu, backdated to 1966, were 0.027±0.002 (1), 4.5±0.2 (1) and 8.2±0.8 (1), respectively, characterizing the accident of Palomares as the source term of the measured plutonium.  相似文献   

15.
Activity concentrations of 237Np in peat and lichen samples in Finland were determined and contributions from nuclear weapons testing in 1950–1960s and the Chernobyl accident were estimated. 237Np was determined with ICP-MS using 235Np as a tracer. Activity concentrations of 237Np in peat samples varied between 1.98 ± 0.05 and 14.1 ± 0.3 mBq/m2. The contribution from the Chernobyl accident to the total 237Np deposition in peat was 0.1–13%, the Chernobyl-derived fraction of total 237Np in peat being much lower than the previously determined corresponding Chernobyl-derived fractions of 239+240Pu, 241Pu, 241Am and 244Cm.  相似文献   

16.
The origin and release date of environmental plutonium have been assessed by the measurement of plutonium and americium isotopic composition. The applicability and sensitivity of different plutonium isotope ratios, 240Pu/239Pu and 241Pu/239Pu measured by inductively coupled plasma sector field mass spectrometry and 238Pu/239Pu analysed by alpha spectrometry, have been evaluated for origin determination in several types of environmental samples. With use of mixing models the contribution of different sources (e.g. global fallout or Chernobyl) can be calculated. By the measurement of the 241Am/241Pu isotope ratio, the release date (i.e. formation of 241Pu by irradiation) can be estimated in environmental samples, which is an important parameter to distinguish recent plutonium release from previous (e.g. Chernobyl) emissions.  相似文献   

17.
A gamma-spectrometric method using an intrinsic high resolution germanium detector has been developed for the determination of isotope ratios of plutonium from samples in solution form. The method is based on the assay of low energy gamma-rays of238Pu,239Pu,240Pu and241Pu and does not require the use of branching intensities or the knowledge of detection efficiencies for different gamma rays. Since low energy gamma-rays are used, the effect of241Am has also been studied. It is found that results are not affected up to 0.5 wt% of241Am in plutonium samples. An accuracy of 3% is achievable in the determination of240Pu/239Pu and241Pu/239Pu atom ratios as demonstrated by carrying out measurements on isotopic standards of plutonium.  相似文献   

18.
Summary The present paper describes a new analytical method for determining the 240Pu/239Pu isotopic ratio and 238Pu/239+240Pu α -activity ratio in seawater, both of which are important parameters for determining Pu sources in the ocean. Plutonium isotopes were preconcentrated from a large volume of seawater (4700-10800 liter) by solid phase extraction using MnO2-impregnated fibers and eluted into 3M HCl. After the elution, the Pu species of all oxidation states were converted to Pu(IV) using NaNO2, purified by solvent extraction using thenoyltrifluoroacetone (TTA)-benzene, and concentrated in 5 ml of 0.2M HNO2. The 240Pu/239Pu and 238Pu/239+240Pu ratios in the 5-ml final solution were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and α-spectrometry, respectively. A pg level of Pu, which was a sufficiently large amount for the determination, was obtained by the solid phase extraction. Through the redox conversion and solvent extraction, the Pu species, such as Pu(III), Pu(IV) and Pu(VI), were collected at a high recovery of 96±2% (n=3) despite the presence of large amounts of Mn, and interfering 238U (3.3 μg. l-1in seawater) was effectively removed with a decontamination factor of 1.7·107. The accuracy of the method for the 240Pu/239Pu ratio was verified using reference materials of seawater and a terrestrial soil sample. The present technique was applied to the determination of the 240Pu/239Pu and 238Pu/239+240Pu ratios in coastal and oceanic water.  相似文献   

19.
Due to the different 240Pu/239Pu atom ratios from different sources of Pu in the environment, Pu isotopes have been widely used for source identification of radionuclides in sediments. In this work, using sector-field ICP-MS, we investigated Pu inventory and its isotopic composition in a lacustrine sediment core collected in Chenghai Lake, SW China. The 240Pu/239Pu atom ratios in this sediment core ranged from 0.166 to 0.271 with a mean of 0.195±0.021, which was slightly higher than that of global fallout. The 239+240Pu/137Cs activity ratios ranged from 0.0155 to 0.0411, with a mean of 0.0215, and the 239+240Pu inventory was 35.4 MBq/km2; both 239+240Pu/137Cs activity ratio and Pu inventory were close to those values of global fallout at 20–30 °N. Three peaks were observed for both 137Cs and 239+240Pu activities in the examined sediment core; they most probably indicated the maximum deposition of global fallout between 1963 and 1964, the fallout from a series of Chinese nuclear tests during the 1970s, and the deposition of resuspended Pu-bearing particles from the Chernobyl accident. Therefore, the vertical profile of Pu isotopes should provide useful time markers for rapid dating of recent sediments. These authors contributed equally to this work.  相似文献   

20.
Inductively coupled plasma mass spectrometry (ICPMS), particularly with sector field mass analyzers (SF-ICPMS), has emerged in the past several years as an excellent analytical technique for rapid, highly sensitive determination of transuranic elements (TRU) in environmental samples. SF-ICPMS has advantages of simplicity of sample preparation, high sample throughput, widespread availability in laboratories worldwide, and relatively straightforward operation when compared to other competing mass spectrometric techniques. Arguably, SF-ICPMS is the preferred technique for routine, high-throughput determination of 237Np and the Pu isotopes, excepting 238Pu, at fg-pg levels in environmental samples. Many research groups have now demonstrated the SF-ICPMS determination of 239 + 240Pu activities, 240Pu/239Pu and other Pu atom ratios in several different application areas. Many studies have examined the relative contribution of global fallout vs. local/regional Pu sources in the environment through measurement of 240Pu/239Pu and, in some cases, 241Pu/239Pu and 242Pu/239Pu. “Stratospheric fallout”, which was deposited from thermonuclear tests, conducted largely during the 1952–1964 time period, is characterized by a well-defined 240Pu/239Pu of ~ 0.18, while most other sources have different ratios. Examples of local/regional Pu sources are the Nevada Test Site, the Chernobyl plume, and accidents at Palomares, Spain and Thule, Greenland. The determination of Pu activities and atom ratios has stimulated much interest in the use of Pu as a marine tracer; several studies have shown that Pu is transported over long distances by ocean currents. 240Pu/239Pu ratios > 0.20 in sediments and seawater of the North Pacific are ascribed to ocean current transport of fallout from the Pacific Proving Ground. In nuclear forensics, much effort is focused on detection and fingerprinting of small amounts of TRU in environmental samples consisting of bulk material or individual isolated particles. Activity measurements of 239 + 240Pu, determined by SF-ICPMS, have the potential to supplement and/or replace 137Cs as a tracer of erosion, deposition, and sedimentation. Undoubtedly, the application of SF-ICPMS in TRU analysis will continue to expand, witness new developments, and generate interesting unforeseen applications in upcoming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号