首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
WUNing 《理论物理通讯》2003,40(4):429-434
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.  相似文献   

2.
WU Ning 《理论物理通讯》2004,41(4):567-572
In 1992, E.E. Podkletnov and R. Nieminen found that under certain conditions, ceramic superconductor with composite structure reveals weak shielding properties against gravitational force. In classical Newton's theory of gravity and even in Einstein's general theory of gravity, there are no grounds of gravitational shielding effects. But in quantum gauge theory of gravity, the gravitational shielding effects can be explained in a simple and natural way. In quantum gauge theory of gravity, gravitational gauge interactions of complex scalar field can be formulated based on gauge principle. After spontaneous symmetry breaking, if the vacuum of the complex scalar field is not stable and uniform, there will be a mass term of gravitational gauge field. When gravitational gauge field propagates in this unstable vacuum of the complex scalar field, it will decays exponentially, which is the nature of gravitational shielding effects. The mechanism of gravitational shielding effects is studied in this paper, and some main properties of gravitational shielding effects are discussed.  相似文献   

3.
WU Ning 《理论物理通讯》2004,41(3):381-384
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.  相似文献   

4.
The question of to what extent zeta function regularization respects the invariances of a quantum field theory in a background gravitational field is investigated. It is shown that zeta function regularization provides a generalization to curved space-time of analytic propagator regularization which is known not to respect gauge invariance. Furthermore, a study of the regularized stress tensor of a conformally invariant scalar field indicates that both conformai and general coordinate invariance are violated.  相似文献   

5.
Using the idea of metric scaling we examine the scaling behavior of the stress tensor of a scalar quantum field in curved space-time. The renormalization of the stress tensor results in a departure from naive scaling. We view the process of renormalizing the stress tensor as being equivalent to renormalizing the coupling constants in the Lagrangian for gravity (with terms quadratic in the curvature included). Thus the scaling of the stress tensor is interpreted as a nonnaive scaling of these coupling constants. In particular, we find that the cosmological constant and the gravitational constant approach UV fixed points. The constants associated with the terms which are quadratic in the curvature logarithmically diverge. This suggests that quantum gravity is asymptotically scale invariant.  相似文献   

6.
A quantum field theory model that contains interacting non-Abelian gauge fields, scalar fields, and spinor fields is considered in a curved space-time with torsion. The cone-loop counterterms are found. It is shown that the multiplicative renormalization condition requires a nonminimal coupling of the matter with the gravitational field.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 94–100, August, 1985.  相似文献   

7.
The structure of quantum field theory renormalization in curved space-time is investigated. The equations allowing us to investigate the behaviour of vacuum energy and vertex functions in the limit of small distances in the external gravitational field are established. The behaviour of effective charges corresponding to the parameters of nonminimal coupling of the matter with the gravitational field is studied and the conditions under which asymptotically free theories become asymptotically conformally invariant are found. The examples of asymptotically conformally invariant theories are given. On the basis of a direct solution of renormalization group equations the effective potential in the external gravitational field and the effective action in the gravity with the high derivatives are obtained. The expression for the cosmological constant in terms of R2-gravity Lagrangian parameters is given which does not contradict the observable data. Renormalization and renormalization group equations for the theory in curved space-time with torsion are investigated.  相似文献   

8.
WU Ning 《理论物理通讯》2002,38(2):151-156
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussed in this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum, it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantum theory.  相似文献   

9.
The Lagrangian based theory of the gravitational field and its sources at the arbitrary background space-time is developed. The equations of motion and the energy-momentum tensor of the gravitational field are derived by applying the variational principle. The gauge symmetries of the theory and the associated conservation laws are investigated. Some properties of the energymomentum tensor of the gravitational field are described in detail and the examples of its application are given. The desire to have the total energymomentum tensor as a source for the linear part of the gravitational field leads to the universal coupling of gravity with other fields (as well as to the self-interaction) and finally to the Einstein theory.  相似文献   

10.
WUNing 《理论物理通讯》2004,42(4):543-552
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein‘s field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.  相似文献   

11.
A scalar field Lagrangian is considered in the curved space-time to which a Hamiltonian determining nonzero vacuum field value is added. The initial Lagrangian can be expressed as a sum of Lagrangians for the constant scalar field component and perturbation. The first Lagrangian can be considered as a Lagrangian for the Einstein gravitational field in vacuum. The problem of renormalization of the constant scalar field component is investigated. It is demonstrated that in the case of conformal relation of the scalar field to the space-time curvature, there exists a unique value of the scalar space curvature for which the field can be considered constant (field perturbations do not result in renormalization of the constant component). This curvature value determines the unique value of the equilibrium nuclide density. A correlation of the examined Lagrangian parameters with the integral parameters of the Solar system is discussed. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 18–34, July, 2006.  相似文献   

12.
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton‘s theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein‘s general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.  相似文献   

13.
Renormalization group equations are derived which permit study of the behavior of the quantum theory effective potential of a field in curved space-time. Within the framework of asymptotically free models the asymptotes of the potential are studied for the limit of a strong gravitational field, the limit of large scalar fields, and the composite limit. The conditions for stability of quantum field theory in an external gravitational field are investigated.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 26–32, October, 1985.The authors are indebted to I. V. Tyutin for evaluating the study.  相似文献   

14.
WU Ning 《理论物理通讯》2005,44(5):883-886
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field. The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides, it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field. The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.  相似文献   

15.
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.  相似文献   

16.
The role of the Bargmann group (11-dimensional extended Galilei group) in nonrelativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as general relativity and couples minimally to a complex scalar field leading to a four-dimensionally covariant Schrödinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory.Partially supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. A8059.  相似文献   

17.
One may ask whether the relations between energy and frequency and between momentum and wave vector, introduced for matter waves by de Broglie, are rigorously valid in the presence of gravity. In this paper, we show this to be true for Dirac equations in a background of gravitational and electromagnetic fields. We first transform any Dirac equation into an equivalent canonical form, sometimes used in particular cases to solve Dirac equations in a curved space-time. This canonical form is needed to apply Whitham’s Lagrangian method. The latter method, unlike the Wentzel–Kramers–Brillouin method, places no restriction on the magnitude of Planck’s constant to obtain wave packets and furthermore preserves the symmetries of the Dirac Lagrangian. We show by using canonical Dirac fields in a curved space-time that the probability current has a Gordon decomposition into a convection current and a spin current and that the spin current vanishes in the Whitham approximation, which explains the negligible effect of spin on wave packet solutions, independent of the size of Planck’s constant. We further discuss the classical-quantum correspondence in a curved space-time based on both Lagrangian and Hamiltonian formulations of the Whitham equations. We show that the generalized de Broglie relations in a curved space-time are a direct consequence of Whitham’s Lagrangian method and not just a physical hypothesis as introduced by Einstein and de Broglie and by many quantum mechanics textbooks.  相似文献   

18.
The one-parameter dependent family of the gauge invariant and gauge fixing independent effective actions is considered in one-loop approximation. The one-loop unique effective action (chosing as the representative of this family) in d = 4 Einstein quantum gravity with scalar field and Brans-Dicke quantum theory in flat space, in d = 4 Einstein gravity on De Sitter background, in higher derivative gravity on d-dimensional torus compactified background is calculated. The configuration-space metric dependence of the unique effective action in these calculations is investigated. The appearing problems (the configuration-space metric dependence of the physical quantities like induced gravitational constant) are discussed.  相似文献   

19.
Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT=2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner-Nordström type metric is obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号