首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou HC  Su W  Achim C  Rao PV  Holm RH 《Inorganic chemistry》2002,41(12):3191-3201
High-nuclearity Mo[bond]Fe[bond]S clusters are of interest as potential synthetic precursors to the MoFe(7)S(9) cofactor cluster of nitrogenase. In this context, the synthesis and properties of previously reported but sparsely described trinuclear [(edt)(2)M(2)FeS(6)](3-) (M = Mo (2), W (3)) and hexanuclear [(edt)(2)Mo(2)Fe(4)S(9)](4-) (4, edt = ethane-1,2-dithiolate; Zhang, Z.; et al. Kexue Tongbao 1987, 32, 1405) have been reexamined and extended. More accurate structures of 2-4 that confirm earlier findings have been determined. Detailed preparations (not previously available) are given for 2 and 3, whose structures exhibit the C(2) arrangement [[(edt)M(S)(mu(2)-S)(2)](2)Fe(III)](3-) with square pyramidal Mo(V) and tetrahedral Fe(III). Oxidation states follow from (57)Fe M?ssbauer parameters and an S = (3)/(2) ground state from the EPR spectrum. The assembly system 2/3FeCl(3)/3Li(2)S/nNaSEt in methanol/acetonitrile (n = 4) affords (R(4)N)(4)[4] (R = Et, Bu; 70-80%). The structure of 4 contains the [Mo(2)Fe(4)(mu(2)-S)(6)(mu(3)-S)(2)(mu(4)-S)](0) core, with the same bridging pattern as the [Fe(6)S(9)](2-) core of [Fe(6)S(9)(SR)(2)](4-) (1), in overall C(2v) symmetry. Cluster 4 supports a reversible three-member electron transfer series 4-/3-/2- with E(1/2) = -0.76 and -0.30 V in Me(2)SO. Oxidation of (Et(4)N)(4)[4] in DMF with 1 equiv of tropylium ion gives [(edt)(2)Mo(2)Fe(4)S(9)](3-) (5) isolated as (Et(4)N)(3)[5].2DMF (75%). Alternatively, the assembly system (n = 3) gives the oxidized cluster directly as (Bu(4)N)(3)[5] (53%). Treatment of 5 with 1 equiv of [Cp(2)Fe](1+) in DMF did not result in one-electron oxidation but instead produced heptanuclear [(edt)(2)Mo(2)Fe(5)S(11)](3-) (6), isolated as the Bu(4)N(+)salt (38%). Cluster 6 features the previously unknown core Mo(2)Fe(5)(mu(2)-S)(7)(mu(3)-S)(4) in molecular C(2) symmetry. In 4-6, the (edt)MoS(3) sites are distorted trigonal bipramidal and the FeS(4) sites are distorted tetrahedral with all sulfide ligands bridging. M?ssbauer spectroscopic data for 2 and 4-6 are reported; (mean) iron oxidation states increase in the order 4 < 5 approximately 1 < 6 approximately 2. Redox and spectroscopic data attributed earlier to clusters 2 and 4 are largely in disagreement with those determined in this work. The only iron and molybdenum[bond]iron clusters with the same sulfide content as the iron[bond]molybdenum cofactor of nitrogenase are [Fe(6)S(9)(SR)(2)](4-) and [(edt)(2)Mo(2)Fe(4)S(9)](3-)(,4-).  相似文献   

2.
Hauser C  Bill E  Holm RH 《Inorganic chemistry》2002,41(6):1615-1624
A new series of cubane-type [VFe(3)S(4)](z)() clusters (z = 1+, 2+, 3+) has been prepared as possible precursor species for clusters related to those present in vanadium-containing nitrogenase. Treatment of [(HBpz(3))VFe(3)S(4)Cl(3)](2)(-) (2, z = 2+), protected from further reaction at the vanadium site by the tris(pyrazolyl)hydroborate ligand, with ferrocenium ion affords the oxidized cluster [(HBpz(3))VFe(3)S(4)Cl(3)](1)(-) (3, z = 3+). Reaction of 2 with Et(3)P results in chloride substitution to give [(HBpz(3))VFe(3)S(4)(PEt(3))(3)](1+) (4, z = 2+). Reaction of 4 with cobaltocene reduced the cluster with formation of the edge-bridged double-cubane [(HBpz(3))(2)V(2)Fe(6)S(8)(PEt(3))(4)] (5, z = 1+, 1+), which with excess chloride underwent ligand substitution to afford [(HBpz(3))(2)V(2)Fe(6)S(8)Cl(4)](4)(-) (6, z = 1+, 1+). X-ray structures of (Me(4)N)[3], [4](PF(6)), 5, and (Et(4)N)(4)[6] x 2MeCN are described. Cluster 5 is isostructural with previously reported [(Cl(4)cat)(2)(Et(3)P)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] and contains two VFe(3)S(4) cubanes connected across edges by a Fe(2)S(2) rhomb in which the bridging Fe-S distances are shorter than intracubane Fe-S distances. M?ssbauer (2-5), magnetic (2-5), and EPR (2, 4) data are reported and demonstrate an S = 3/2 ground state for 2 and 4 and a diamagnetic ground state for 3. Analysis of (57)Fe isomer shifts based on an empirical correlation between shift and oxidation state and appropriate reference shifts results in two conclusions. (i) The oxidation 2 --> 3 + e(-) results in a change in electron density localized largely or completely on the Fe(3) subcluster and associated sulfur atoms. (ii) The most appropriate charge distributions are [V(3+)Fe(3+)Fe(2+)(2)S(4)](2+) (Fe(2.33+)) for 1, 2, and 4 and [V(3+)Fe(3+)(2)Fe(2+)S(4)](3+) (Fe(2.67+)) for 3 and [V(2)Fe(6)S(8)(SEt)(9)](3+). Conclusion i applies to every MFe(3)S(4) cubane-type cluster thus far examined in different redox states at parity of cluster ligation. The formalistic charge distributions are regarded as the best current approximations to electron distributions in these delocalized species. The isomer shifts require that iron atoms are mixed-valence in each cluster.  相似文献   

3.
4.
Lo W  Huang S  Zheng SL  Holm RH 《Inorganic chemistry》2011,50(21):11082-11090
Cubane-type clusters [Fe(4)S(4)(SR*)(4)](2-) containing chiral thiolate ligands with R* = CH(Me)Ph (1), CH(2)CH(Me)Et (2), and CH(2)CH(OH)CH(2)OH (3) have been prepared by ligand substitution in the reaction systems [Fe(4)S(4)(SEt)(4)]/R*SH (1-3, acetonitrile) and [Fe(4)S(4)Cl(4)](2-)/NaSR*(3, Me(2)SO). Reactions with successive equivalents of thiol or thiolate generate the species [Fe(4)S(4)L(4-n)(SR*)(n)](2-) (L = SEt, Cl) with n = 1-4. Clusters 1 and 2 were prepared with racemic thiols leading to the possible formation of one enantiomeric pair (n = 1) and seven diastereomers and their enantiomers (n = 2-4). Reactions were monitored by isotropically shifted (1)H NMR spectra in acetonitrile or Me(2)SO. In systems affording 1 and 2 as final products, individual mixed-ligand species could not be detected. However, crystallization of (Et(4)N)(2)[1] afforded 1-[SS(RS)(RS)] in which two sites are disordered because of occupancy of R and S ligands. Similarly, (Et(4)N)(2)[2] led to 2-[SSSS], a consequence of spontaneous resolution upon crystallization. The clusters 3-[RRRR] and 3-[SSSS] were obtained from enantiomerically pure thiols. Successive reactions lead to detection of species with n = 1-4 by appearance of four pairs of diastereotopic SCH(2) signals in both acetonitrile and Me(2)SO reaction systems. Identical spectra were obtained with racemic, R-(-), and S-(+) thiols, indicating that ligand-ligand interactions are too weak to allow detection of diastereomers (e.g., [SSSS] vs [SSRR]). The stability of 3 in Me(2)SO/H(2)O media is described.  相似文献   

5.
Reactions of niobium and tantalum pentachlorides with tert-butylamine (>/=6 equiv) in benzene afford the dimeric imido complexes [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (90%) and [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (79%). The niobium complex exists as two isomers in solution, while the tantalum complex is composed of three major isomers and at least two minor isomers. Analogous treatments with isopropylamine (>/=7 equiv) give the monomeric complexes NbCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%) and TaCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%). The monomeric complexes are unaffected by treatment with excess isopropylamine, while the dimeric complexes are cleaved to the monomers MCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)(2) upon addition of excess tert-butylamine in chloroform solution. Treatment of niobium and tantalum pentachlorides with 2,6-diisopropylaniline affords insoluble precipitates of [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%) and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%), which react with 4-tert-butylpyridine to afford the soluble complexes [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (45%) and [4-t-C(4)H(9)C(5)H(4)NH](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (44%). Sublimation of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), MCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2), and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[MCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] leads to decomposition to give [MCl(3)(NR)(NH(2)R)](2) as sublimates (32-49%), leaving complexes of the proposed formulation MCl(NR)(2) as nonvolatile residues. By contrast, [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) sublimes without chemical reaction. Analysis of the organic products obtained from thermal decomposition of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) showed isobutylene and tert-butylamine in a 2.2:1 ratio. Mass spectra of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), and [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) showed the presence of dimeric imido complexes, monomeric imido complexes, and nitrido complexes, implying that such species are important gas phase species in CVD processes utilizing these molecular precursors. The crystal structures of [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))], [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2), [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2), and [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) were determined. [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] crystallizes in the space group P2(1)/c with a = 12.448(3) ?, b = 10.363(3) ?, c = 28.228(3) ?, beta = 94.92(1) degrees, V = 3628(5) ?(3), and Z = 4. [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) crystallizes in the space group P2(1)/c with a = 9.586(4) ?, b = 12.385(4) ?, c = 11.695(4) ?, beta = 112.89(2) degrees, V = 1279.0(6) ?(3), and Z = 2. [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.285(3) ?, b = 11.208(3) ?, c = 23.867(6) ?, beta = 97.53 degrees, V = 2727(1) ?(3), and Z = 2. [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.273(1) ?, b = 11.241(2) ?, c = 23.929(7) ?, beta = 97.69(2) degrees, V = 2695(2) ?(3), and Z = 2. These findings are discussed in the context of niobium and tantalum nitride film depositions from molecular precursors.  相似文献   

6.
Our explorations of the reactivity of Fe/Mo/S clusters of some relevance to the FeMoco nitrogenase have led to new double-fused cubane clusters with the Mo2Fe6S8 core as derivatives of the known (Cl4-cat)2Mo2Fe6S8(PPr3)6 (I) fused double cubane. The new clusters have been obtained by substitution reactions of the PPr3 ligands with Cl-, BH4-, and N3-. By careful control of the conditions of these reactions, the clusters [(Cl4-cat)(PPr3)MoFe3S4(BH4)2]2(Bu4N)4 (II), [(Cl4-cat)(PPr3)MoFe3S4(PPr3)(BH4)]2(Bu4N)2 (III), [(Cl4-cat)(PPr3)MoFe3S4(N3)2]2(Bu4N)4 (IV), [(Cl4-cat)(PPr3)MoFe3S4(PPr3)(N3)]2(Bu4N)2 (V), and [(Cl4-cat)(PPr3)MoFe3S4Cl2]2(Et4N)4 (VI) have been obtained and structurally characterized. A study of their electrochemistry shows that the reduction potentials for the derivatives of I are shifted to more positive values than those of I, suggesting a stabilization of the reduced clusters by the anionic ligands BH4- and N3-. Using 1H NMR spectroscopy, we have explored the lability of the BH4- ligand in II in coordinating solvents and its hydridic character, which is apparent in its reactivity toward proton sources such as MeOH or PhOH.  相似文献   

7.
Kinetic studies on the substitution reaction between [Fe(4)S(4)Cl(4)](2-) and Bu(t)NC or Et(2)NCS(2)(-) are reported. The binding of small molecules and ions to Fe-S clusters is a fundamental step in substitution reactions but can be difficult to follow directly because these reactions are rapid and often associated with small spectroscopic changes. A novel kinetic method is reported which allows the time course of molecule and ion binding to Fe-S clusters to be followed by monitoring the lability of the cluster. Using a stopped-flow, sequential-mix apparatus, [Fe(4)S(4)Cl(4)](2-) and L (L = Et(2)NCS(2)(-) or Bu(t)NC) are rapidly mixed, and after a known time (delta) the resulting solution is mixed with a solution of PhS(-). The thiolate substitutes for the chloro ligands on the cluster, in a reaction which is easy to follow because of the large change in the visible absorption spectrum. The rate of this substitution is extremely sensitive to whether L is bound to the cluster or not. By correlation of delta with the rate of the reaction with PhS(-), the time course of the reaction between [Fe(4)S(4)Cl(4)](2-) and L can be mapped out. In studies where L = Bu(t)NC this technique has allowed the detection of an intermediate ([Fe(4)S(4)Cl(4)(CNBu(t))](2-)) which cannot be detected spectrophotometrically. In further studies, the substitution reactions of [Fe(4)S(4)Cl(4)](2-) with PhS(-), Et(2)NCS(2)(-), or Bu(t)NC are all perturbed by the addition of Cl(-). In all cases a common pathway for substitution is evident, but with Et(2)NCS(2)(-) an additional, slower pathway becomes apparent under conditions where the common pathway is completely inhibited by Cl(-).  相似文献   

8.
The catalytic function of the previously synthesized and characterized [(L)MoFe(3)S(4)Cl(3)](2)(-)(,3)(-) clusters (L = tetrachlorocatecholate, citrate, citramalate, methyliminodiacetate, nitrilotriacetate, thiodiglycolate) and of the [MoFe(3)S(4)Cl(3)(thiolactate)](2)(4)(-) and [(MoFe(3)S(4)Cl(4))(2)(&mgr;-oxalate)](4)(-) clusters in the reduction of N(2)H(4) to NH(3) is reported. In the catalytic reduction, which is carried out at ambient temperature and pressure, cobaltocene and 2,6-lutidinium chloride are supplied externally as electron and proton sources, respectively. In experiments where the N(2)H(4) to the [(L)MoFe(3)S(4)Cl(3)](n)()(-) catalyst ratio is 100:1, and over a period of 30 min, the reduction proceeds to 92% completion for L = citrate, 66% completion for L = citramalate, and 34% completion for L = tetrachlorocatecholate. The [Fe(4)S(4)Cl(4)](2)(-) cluster is totally inactive and gives only background ammonia measurements. Inhibition studies with PEt(3) and CO as inhibitors show a dramatic decrease in the catalytic efficiency. These results are consistent with results obtained previously in our laboratory and strongly suggest that N(2)H(4) activation and reduction occur at the Mo site of the [(L)MoFe(3)S(4)Cl(3)](2)(-)(, 3)(-) clusters. A possible pathway for the N(2)H(4) reduction on a single metal site (Mo) and a possible role for the carboxylate ligand are proposed. The possibility that the Mo-bound polycarboxylate ligand acts as a proton delivery "shuttle" during hydrazine reduction is considered.  相似文献   

9.
The occurrence of a heteroatom X (C, N, or O) in the MoFe7S9X core of the iron-molybdenum cofactor of nitrogenase has encouraged synthetic attempts to prepare high-nuclearity M-Fe-S-X clusters containing such atoms. We have previously shown that reaction of the edge-bridged double cubane [(Tp)2Mo2Fe6S8(PEt3)4] (1) with nucleophiles HQ- affords the clusters [(Tp)2Mo2Fe6S8Q(QH)2](3-) (Q = S, Se) in which HQ- is a terminal ligand and Q(2-) is a mu2-bridging atom in the core. Reactions with OH- used as such or oxygen nucleophiles generated in acetonitrile from (Bu3Sn)2O or Me3SnOH and fluoride were examined. Reaction of 1 with Et4NOH in acetonitrile/water generates [(Tp)2Mo2Fe6S9(OH)2]3- (3), isolated as [(Tp)2Mo2Fe6S9(OH)(OC(=NH)Me)(H2O)](3-) and shown to have the [Mo2Fe6(mu2-S)2(mu3-S)6(mu6-S)] core topology very similar to the P(N) cluster of nitrogenase. The reaction system 1/Et4NOH in acetonitrile/methanol yields the P(N)-type cluster [(Tp)2Mo2Fe6S9(OMe)2(H2O)](3-) (5). The system 1/Me3SnOH/F- affords the oxo-bridged double P(N)-type cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}5- (7), convertible to the oxidized cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}4- (6), which is prepared independently from [(Tp)2Mo2Fe6S9F2(H2O)](3-)/(Bu3Sn)2O. In the preparations of 3-5 and 7, hydroxide liberates sulfide from 1 leading to the formation of P(N)-type clusters. Unlike reactions with HQ-, no oxygen atoms are integrated into the core structures of the products. However, the half-dimer composition [Mo2Fe6S9O] relates to the MoFe7S9 constitution of the putative native cluster with X = O. (Tp = hydrotris(pyrazolyl) borate(1-)).  相似文献   

10.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

11.
The electronic structures of complexes of iron containing two S,S'-coordinated benzene-1,2-dithiolate, (L)(2)(-), or 3,5-di-tert-butyl-1,2-benzenedithiolate, (L(Bu))(2)(-), ligands have been elucidated in depth by electronic absorption, infrared, X-band EPR, and Mossbauer spectroscopies. It is conclusively shown that, in contrast to earlier reports, high-valent iron(IV) (d(4), S = 1) is not accessible in this chemistry. Instead, the S,S'-coordinated radical monoanions (L(*))(1)(-) and/or (L(Bu)(*))(1)(-) prevail. Thus, five-coordinate [Fe(L)(2)(PMe(3))] has an electronic structure which is best described as [Fe(III)(L)(L(*))(PMe(3))] where the observed triplet ground state of the molecule is attained via intramolecular, strong antiferromagnetic spin coupling between an intermediate spin ferric ion (S(Fe) = (3)/(2)) and a ligand radical (L(*))(1)(-) (S(rad) = (1)/(2)). The following complexes containing only benzene-1,2-dithiolate(2-) ligands have been synthesized, and their electronic structures have been studied in detail: [NH(C(2)H(5))(3)](2)[Fe(II)(L)(2)] (1), [N(n-Bu)(4)](2)[Fe(III)(2)(L)(4)] (2), [N(n-Bu)(4)](2)[Fe(III)(2)(L(Bu))(4)] (3); [P(CH(3))Ph(3)][Fe(III)(L)(2)(t-Bu-py)] (4) where t-Bu-py is 4-tert-butylpyridine. Complexes containing an Fe(III)(L(*))(L)- or Fe(III)(L(Bu))(L(Bu)(*))- moiety are [N(n-Bu)(4)][Fe(III)(2)(L(Bu))(3)(L(Bu)(*))] (3(ox)()), [Fe(III)(L)(L(*))(t-Bu-py)] (4(ox)()), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))] (7), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))(2)] (8), and [Fe(III)(L(Bu))(L(Bu)(*))(PPr(3))] (9), where Pr represents the n-propyl substituent. Complexes 2, 3(ox)(), 4, [Fe(III)(L)(L(*))(PMe(3))(2)] (6), and 9 have been structurally characterized by X-ray crystallography.  相似文献   

12.
In the reaction of organic monocationic chlorides or coordinatively saturated metal-ligand complex chlorides with linear, neutral Hg(CN)(2) building blocks, the Lewis-acidic Hg(CN)(2) moieties accept the chloride ligands to form mercury cyanide/chloride double salt anions that in several cases form infinite 1-D and 2-D arrays. Thus, [PPN][Hg(CN)(2)Cl].H(2)O (1), [(n)Bu(4)N][Hg(CN)(2)Cl].0.5 H(2)O (2), and [Ni(terpy)(2)][Hg(CN)(2)Cl](2) (4) contain [Hg(CN)(2)Cl](2)(2-) anionic dimers ([PPN]Cl = bis(triphenylphosphoranylidene)ammonium chloride, [(n)Bu(4)N]Cl = tetrabutylammonium chloride, terpy = 2,2':6',6' '-terpyridine). [Cu(en)(2)][Hg(CN)(2)Cl](2) (5) is composed of alternating 1-D chloride-bridged [Hg(CN)(2)Cl](n)(n-) ladders and cationic columns of [Cu(en)(2)](2+) (en = ethylenediamine). When [Co(en)(3)]Cl(3) is reacted with 3 equiv of Hg(CN)(2), 1-D [[Hg(CN)(2)](2)Cl](n)(n-) ribbons and [Hg(CN)(2)Cl(2)](2-) moieties are formed; both form hydrogen bonds to [Co(en)(3)](3+) cations, yielding [Co(en)(3)][Hg(CN)(2)Cl(2)][[Hg(CN)(2)](2)Cl] (6). In [Co(NH(3))(6)](2)[Hg(CN)(2)](5)Cl(6).2H(2)O (7), [Co(NH(3))(6)](3+) cations and water molecules are sandwiched between chloride-bridged 2-D anionic [[Hg(CN)(2)](5)Cl(6)](n)(6n-) layers, which contain square cavities. The presence (or absence), number, and profile of hydrogen bond donor sites of the transition metal amine ligands were observed to strongly influence the structural motif and dimensionality adopted by the anionic double salt complex anions, while cation shape and cation charge had little effect. (199)Hg chemical shift tensors and (1)J((13)C,(199)Hg) values measured in selected compounds reveal that the NMR properties are dominated by the Hg(CN)(2) moiety, with little influence from the chloride bonding characteristics. delta(iso)((13)CN) values in the isolated dimers are remarkably sensitive to the local geometry.  相似文献   

13.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

14.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

15.
Five series of [2Fe-2S] complexes, [Fe(2)S(2)Cl(2)(-)(x)(CN)(x)](-), [Fe(2)S(2)(SEt)(2)(-)(x)Cl(x)](-), [Fe(2)S(2)(SEt)(2)(-)(x)(CN)(x)](-), [Fe(2)S(2)Cl(2)(-)(x)(OAc)(x)](-) (OAc = acetate), and [Fe(2)S(2)(SEt)(2)(-)(x)(OPr)(x)](-) (OPr = propionate) (x = 0-2), were produced by collision-induced dissociation of the corresponding [4Fe-4S] complexes, and their electronic structures were studied by photoelectron spectroscopy. All the [2Fe-2S] complexes contain a [Fe(2)S(2)](+) core similar to that in reduced [2Fe] ferredoxins but with different coordination geometries. For the first three series, which only involve tricoordinated Fe sites, a linear relationship between the measured binding energies and the substitution number (x) was observed, revealing the independent ligand contributions to the total electron binding energies. The effect of the ligand increases in the order SEt --> Cl --> CN, conforming to their electron-withdrawing ability in the same order. The carboxylate ligands in the [Fe(2)S(2)Cl(2)(-)(x)(OAc)(x)](-) and [Fe(2)S(2)(SEt)(2)(-)(x)(OPr)(x)](-) complexes were observed to act as bidentate ligands, giving rise to tetracoordinated iron sites. This is different from their monodentate coordination behavior in the [4Fe-4S] cubane complexes, reflecting the high reactivity of the unsatisfied three-coordinate iron site in the [2Fe-2S] complexes. The [2Fe-2S] complexes with tetracoordinated iron sites exhibit lower electron binding energies, that is, higher reductive activity than the all tricoordinate planar clusters. The electronic structures of all the [2Fe-2S] complexes were shown to conform to the "inverted energy level scheme".  相似文献   

16.
17.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

18.
The dilithiated boraamidinate complexes [Li(2)[PhB(NDipp)(2)](THF)(3)] (7a) (Dipp = 2,6-diisopropylphenyl) and [Li(2)[PhB(NDipp)(N(t)Bu)](OEt(2))(2)] (7b), prepared by reaction of PhB[N(H)Dipp][N(H)R'] (6a, R' = Dipp; 6b, R' = (t)Bu) with 2 equiv of (n)BuLi, are shown by X-ray crystallography to have monomeric structures with two terminal and one bridging THF ligands (7a) or two terminal OEt(2) ligands (7b). The derivative 7a is used to prepare the spirocyclic group 13 derivative [Li(OEt(2))(4)][In[PhB(NDipp)(2)](2)] (8a) that is shown by an X-ray structural analysis to be a solvent-separated ion pair. The monoamino derivative PhBCl[N(H)Dipp] (9a), obtained by the reaction of PhBCl(2) with 2 equiv of DippNH(2), serves as a precursor for the synthesis of the four-membered BNCN ring [[R'N(H)](Ph)B(mu-N(t)Bu)(2)C(n)Bu] (10a, R' = Dipp). The X-ray structures of 6a, 9a, and 10a have been determined. The related derivative 10b (R' = (t)Bu) was synthesized by the reaction of [Cl(Ph)B(mu-N(t)Bu)(2)C(n)Bu] with Li[N(H)(t)Bu] and characterized by (1)H, (11)B, and (13)C NMR spectra. In contrast to 10a and 10b, NMR spectroscopic data indicate that the derivatives [[DippN(H)](Ph)B(NR')(2)CR(NR')] (11a: R =( t)Bu, R' = Cy; 11b: R = (n)Bu, R' = Dipp) adopt acyclic structures with three-coordinate boron atoms. Monolithiation of 10a produces the novel hybrid boraamidinate/amidinate (bamam) ligand [Li[DippN]PhB(N(t)Bu)C(n)Bu(N(t)Bu)] (12a).  相似文献   

19.
The synthesis and characterization of three ruthenium complexes [Bu(3)MeN][Ru(PPh(3))(2)(NH(2)-B(12)H(11))Cl], [Bu(4)N][Ru(dppb)(NH(2)-B(12)H(11))Cl] and [RuCO(PPh(3))(2)(NH(2)-B(12)H(11))] with amino-closo-dodecaborate as the coordinating ligand are described.  相似文献   

20.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号