首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Yttrium and lanthanide complexes with different P,N ligands in the coordination sphere have been synthesized. First the chloride complexes [{CH(PPh2NSiMe3)2}Ln{(Ph2P)2N}Cl] (Ln = Y (1 a), La (1 b), Nd (1 c), Yb (1 d)) having the bulky [CH(PPh2NSiMe3)2]- and the flexible [(Ph2P)2N]- ligands in the same molecule were prepared by three different synthetic pathways. Compounds 1 a-d can be obtained by reaction of [{[CH(PPh2NSiMe3)2]LnCl2}2] with [K(thf)nN(PPh2)2] (n = 1.25, 1.5) or by treatment of [{(Ph2P)2N}LnCl2(thf)3] with K[CH(PPh2NSiMe3)2]. Furthermore, a one-pot reaction of K[CH(PPh2NSiMe3)2] with LnCl3 and [K(thf)nN(PPh2)2] leads to the same products. Single-crystal X-ray structures of 1 a-d show that the conformation of the six-membered metallacycle (N1-P1-C1-P2-N2-Ln) which is formed by chelation of the [CH(PPh2NSiMe3)2]- ligand to the lanthanide atom is influenced by the ionic radius of the central metal atom. In solution dynamic behavior of the [(Ph2P)2N]- ligand is observed, which is caused by rapid exchange of the two different phosphorus atoms. Further reaction of 1 b with KNPh2 resulted in [{(Me3SiNPPh2)2CH}La{N(PPh2)2}(NPh2)] (2). Compounds 1 a-d and 2 are active in the ring-opening polymerization of epsilon-caprolactone and the polymerization of methyl methacrylate. In some cases high molecular weight polymers with good conversions and narrow polydispersities were obtained. In both polymerizations the catalytic activity depends on the ionic radius of the metal center.  相似文献   

2.
Gamer MT  Roesky PW 《Inorganic chemistry》2004,43(16):4903-4906
Bis(diphosphanylamide) complexes of the lanthanides have been synthesized. Two approaches to obtain these compounds are shown. Reaction of YbCl3 with a slight excess of [K(THF)n][N(PPh2)2] gives [((Ph2P)2N)2 YbCl(THF)2], which can be further reacted with K(C5Me5) to give the corresponding pentamethylcyclopentadienyl complex [((Ph2P)2N)2Yb(C5Me5)]. In a second approach to bis(diphosphanylamide) complexes of the lanthanides, Na(C(5)H(5)) was treated with SmCl3 to generate [(C5H5)SmCl2(THF)3] in situ. Further reaction with 2 equiv of [K(THF)n][N(PPh2)2] gave the desired complex [((Ph2P)2N)2Sm(C5H5)(THF)].  相似文献   

3.
The distorted coordination structures and luminescence properties of novel lanthanide complexes with oxo‐linked bidentate phosphane oxide ligands—4,5‐bis(diphenylphosphoryl)‐9,9‐dimethylxanthene (xantpo), 4,5‐bis(di‐tert‐butylphosphoryl)‐9,9‐dimethylxanthene (tBu‐xantpo), and bis[(2‐diphenylphosphoryl)phenyl] ether (dpepo)—and low‐vibrational frequency hexafluoroacetylacetonato (hfa) ligands are reported. The lanthanide complexes exhibit characteristic square antiprism and trigonal dodecahedron structures with eight‐coordinated oxygen atoms. The luminescence properties of these complexes are characterized by their emission quantum yields, emission lifetimes, and their radiative and nonradiative rate constants. Lanthanide complexes with dodecahedron structures offer markedly high emission quantum yields (Eu: 55–72 %, Sm: 2.4–5.0 % in [D6]acetone) due to enhancement of the electric dipole transition and suppression of vibrational relaxation. These remarkable luminescence properties are elucidated in terms of their distorted coordination structures.  相似文献   

4.
The first cyclodiphosph(III)azane complexes of the rare‐earth elements have been synthesized. Reactions of the lithium salt cis‐[(tBuNP)2(tBuN)2{Li(thf)}2] with anhydrous yttrium trichloride or the heavier lanthanide trichlorides resulted in the corresponding cyclodiphosph(III)azane complexes [Li(thf)4][{(tBuNP)2(tBuN)2}LnCl2] (Ln=Y ( 1 a ), Ho ( 1 b ), Er ( 1 c )). The single‐crystal X‐ray structures showed that compounds 1 a – c consisted of ion pairs composed of a [Li(thf)4]+ cation and a C2v symmetric [{(tBuNP)2(tBuN)2}LnCl2]? anion. By treating cis‐[(tBuNP)2(tBuN)2{Li(thf)}2] with anhydrous SmCl3 in THF, the trimetallic complex [{(tBuNP)2(tBuN)2}SmCl3Li2(thf)4] ( 2 ) was obtained. The influence of the ionic radii of the lanthanides can be seen in the single‐crystal X‐ray structure of compound 2 , which forms a six‐membered Cl‐Li‐Cl‐Li‐Cl‐Sm metallacycle. The ring adopts a boat conformation in which one chlorine atom and the samarium atom are displaced from the Cl2Li2 least‐square plane. Heating of the metalate complexes in toluene resulted in the extrusion of lithium chloride and the formation of the neutral dimeric metal chloride complexes of the composition [(tBuNP)2(tBuN)2LnCl(thf)]2 (Ln=Y ( 3 a ), La ( 3 b ) Nd ( 3 c ), Sm ( 3 d )). Furthermore, treating 1 a with KNPh2 resulted in a lithium metalate complex of the composition [Li(thf)4][{(tBuNP)2(tBuN)2}Y(NPh2)2] ( 4 ). The coordination mode of the {(tBuNP)2(tBuN)2}2? ligand in 4 is different to that observed in 1 a – c , 2 , and 3 a – d ; instead of a symmetric η2 coordination of the ligand, a heterocubane‐type structure is observed in the solid state. The complex [(tBuNP)2(tBuN)2NdCl(thf)] ( 3 c ) was used as a Ziegler–Natta catalyst for the polymerization of 1,3‐butadiene to poly‐cis‐1,4‐butadiene. The observed activities of the Ziegler–Natta catalyst strongly depended upon the nature of the cocatalyst; in some case very high turnover rates and a cis selectivity of 93–94 % were observed.  相似文献   

5.
Several Pd(II) complexes containing the potentially bidentate ligand 2-(diphenylphosphino)-1-methylimidazole, dpim, have been synthesized and characterized: [PdCl2(dpim)]n (1), [PdCl2(H2O)(dpim-κP)] (2), [PdClMe(μ-dpim-κPN)]2 (3) (previously described), [PdClMe(dpim-κP)2] (4), [Pd(C6F5)2(dpim-κP)2] (5) and [Pd(η3-2-Me-C3H4)(μ-dpim-κPN)]2[PF6]2 (6). The highly insoluble complex 1 dissolves in wet DMSO-d6 to give the water adduct 2 in which a hydrogen bond is established between one of the water hydrogens and the imidazolyl nitrogen. Two types of coordination mode have been found for the dpim ligand in these derivatives, with the ligand behaving as P monodentate and also as a P,N bridge. The transformations between 3 and 4 demonstrate the hemilability of the dpim ligand. Complex 6 was obtained as a mixture of two pairs of enantiomers (R,S)/(S,R) and (R,R)/(S,S). Analysis of the fluxional behaviour of 6, in which the allyl group acts as a “reporter ligand”, indicates that Pd-N bond rupture takes place - again providing evidence of the hemilabile character of the dpim ligand.  相似文献   

6.
7.
A new polymorph of the iminophosphorane Ph2P(CH2Py)(NSiMe3), ( 1 ), is compared to a just recently published. The reaction of the starting material, the phosphane Ph2P(CH2Py) with N3SiMe3 in the presence of water gives [Ph2P(CH2Py)(NH2)][N3], ( 2 ). A comparison of the structural and NMR parameters of 2 with previously reported derivatives of 1 , suggests that 2 is best described as a phosphonium salt in which the negatively charged imino nitrogen atom is protonated, according to [Ph2(CH2Py)P+—NH2][N3], rather than as an iminiumphosphane salt [Ph2(CH2Py)P=+NH2][N3].  相似文献   

8.
9.
Based on an unsymmetrical 2-pyridylphosphonate ligand, two types of Ln(III)-Cu(II) compounds with three-dimensional structures were obtained under hydrothermal conditions, namely, Ln(2)Cu(3)(C(5)H(4)NPO(3))(6).4H(2)O (1.Ln; Ln=La, Ce, Pr, Nd) and Ln(2)Cu(3)(C(5)H(4)NPO(3))(6) (2.Ln; Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). Compounds 1.Ln are isostructural and crystallize in chiral cubic space group I2(1)3. In these structures, each Ln ion is nine-coordinate and has a tricapped triprismatic geometry, while each Cu center is six-coordinate with an octahedral environment. The {LnO(9)} polyhedra and {CuN(2)O(4)} octahedra are connected by edge sharing to form an inorganic open framework structure with a 3-connected 10-gon (10,3) topology in which the Ln and Cu atoms are alternately linked by the phosphonate oxygen atoms. Compounds 2.Ln are isostructural and crystallize in trigonal space group R3. In these structures, the {LnO(6)} octahedra are triply bridged by the {CPO(3)} tetrahedra by corner sharing to form an infinite chain along the c axis. Each chain is connected to its six equivalents through corner sharing of {CPO(3)} tetrahedra and {CuN(2)O(2)} planes to form a three-dimensional framework structure in which the Ln and Cu atoms are linked purely by O-P-O units. The formation of these two types of structures is rationalized by quantum chemical calculations, which showed that both the lanthanide contraction and the electron configuration of Cu(II) play important roles. When Cu(II) was replaced by Zn(II), only the first type of compounds resulted. The magnetic properties of complexes 1.Ln and 2.Ln were investigated. The nature of Ln(III)-Cu(II) (Ln=Ce, Pr, Nd) interactions is illustrated by comparison with their Ln(III)-Zn(II) analogues.  相似文献   

10.
A hydrothermal reaction of a mixture of ZnCO3, phosphoric acid, 1, 10‐phenanthroline in H2O gave rise to large plates of a new zinc phosphate, [(C12H8N2Zn)2(HPO4)(H2PO4)2], I . The structure consists of ZnO3N2 distorted trigonal‐bipyramidal and PO4 tetrahedral units linked through their vertices to give rise to a zero‐dimensional molecular solid (monomer). The structure of the monomer appears to be similar to the secondary building unit (SBU) 4 = 1, commonly found in many fibrous zeolites. To our knowledge, this is the first time this building unit has been isolated. The structure, with a unique composition, is stabilized by hydrogen bond interactions between the terminal —OH groups forms a one‐dimensional molecular wire and also by strong π…π interactions between the 1, 10‐phenanthroline units. Photoluminescence studies show that there is a ligand‐to‐metal charge transfer (LMCT). Crystal data: orthorhombic, space group = Fdd2 (no. 43), a = 40.4669(1), b = 7.4733(2), c = 17.4425(5)Å, V = 5274.9(2)Å3, Z = 8.  相似文献   

11.
The reaction of the bis(amino)cyclodiphosph(III)azane, cis-{(tBuNH)(2)(PNtBu)(2)}, with AlMe(3), AlClMe(2), AlCl(2)Me, and AlCl(3) is reported. The less Lewis acidic compound AlMe(3) forms the adduct cis-[(tBuNH)(2)(PNtBu){P.(AlMe(3))NtBu}] (1), in which the aluminum atom is exclusively coordinated to one phosphorus atom. At elevated temperatures AlMe(3) undergoes migratory exchange between the two phosphorus atoms, but no methane elimination is observed. By using the more Lewis acidic compound AlClMe(2) the P-coordinated compound cis-[(tBuNH)(2)(PNtBu){P(AlClMe(2))NtBu}] (2) can be obtained at low temperatures. Compound 2 rearranges irreversibly to a product in which the AlClMe(2) group is coordinated by one exo-cyclic nitrogen atom. A concomitant 1,2-H shift from this nitrogen atom onto the phosphorus atom is observed. The N-coordinated rearrangement product slowly decomposes via a P-N bond cleavage in solution. Reaction of the even more Lewis acidic compounds AlCl(2)Me and AlCl(3) finally led to stable adducts, cis-[(tBuNH)(PNtBu)(tBuNAlCl(2)Me){P(H)NtBu}] (3), and cis-[(tBuNH)(PNtBu)(tBuNAlCl(3)){P(H)NtBu}] (4), in which the aluminum atoms are N-coordinated by a tBuN=PH unit.  相似文献   

12.
Lanthanide dinitrogen complexes, Ln(N2) x (x = 1-8), were investigated by Density Functional Theory computations using the B3LYP exchange-correlation functional in conjunction with quasirelativistic pseudopotentials for Ln. After a recent study on the lanthanum complexes (A. Kovács, Structural Chemistry 2018 , 29, 1825), the present study aimed to probe the changes upon variously filled 4f subshells of Ln on the structures, stabilities, and bonding properties in related complexes of Nd, Ho, and Lu. The bonding properties were assessed on the basis of natural atomic charges, Ln valence orbital populations, and analysis of bonding molecular orbitals.  相似文献   

13.
《Journal of Coordination Chemistry》2012,65(16-18):2856-2874
Abstract

Nine new cobalt(II) compounds, trans-[Co(LPAQ)2(Py)2] (1), trans-[Co(LPAQ)2(3-MePy)2] (2), trans-[Co(LMeAQ)2(Py)2] (3), trans-[Co(LOMeAQ)2(Py)2] (4), trans-[Co(LOEtAQ)2(Py)2]·2(H2O) (5), trans-[Co(LCAQ)2(Py)2] (6), trans-[Co(LBAQ)2(Py)2] (7), cis-[Co(LBAQ)2(3-MePy)2] (8a) and trans-[Co(LBAQ)2(3-MePy)2]·2(3-MePy) (8b) (primary ligand: LXAQ?=?substituted 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olate; secondary ligands: Py?=?pyridine, 3-MePy = 3-methylpyridine), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy. Magnetic measurements of the cobalt compounds were performed in solution by 1H NMR spectroscopy using the Evans’ method while their redox properties were studied by cyclic voltammetry. Single-crystal X-ray diffraction analysis of the compounds revealed their octahedral geometries and trans configuration, except for 8a, which has a cis configuration. Intermolecular noncovalent interactions were detected, π···π interactions in 5, C?–?H···π interactions in 2 and C?–?H···π edge-to-face (T-shaped) arrangements in 3, 4, 6, and 7.  相似文献   

14.
The geometric and electronic structure of formally d(6) tris-biphosphinine [M(bp)(3)](q) and tris-bipyridine [M(bpy)(3)](q) complexes were studied by means of DFT calculations with the B3LYP functional. In agreement with the available experimental data, Group 4 dianionic [M(bp)(3)](2-) complexes (1P-3P for M=Ti, Zr, and Hf, respectively) adopt a trigonal-prismatic (TP) structure, whereas the geometry of their nitrogen analogues [M(bpy)(3)](2-) (1N-3N) is nearly octahedral (OC), although a secondary minimum was found for the TP structures (1N'-3N'). The electronic factors at work in these systems are discussed by means of an MO analysis of the minima, MO correlation diagrams, and thermodynamic cycles connecting the octahedral and trigonal-prismatic limits. In all these complexes, pronounced electron transfer from the metal center to the lowest lying pi* ligand orbitals makes the d(6) electron count purely formal. However, it is shown that the bp and bpy ligands accommodate the release of electron density from the metal in different ways because of a change in the localization of the HOMO, which is a mainly metal-centered orbital in bp complexes and a pure pi* ligand orbital in bpy complexes. The energetic evolution of the HOMO allows a simple rationalization of the progressive change from the TP to the OC structure on successive oxidation of the [Zr(bp)(3)](2-) complex, a trend in agreement with the experimental structure of the monoanionic complex. The geometry of Group 6 neutral complexes [M(bp)(3)] (4P and 5P for M=Mo and W, respectively) is found to be intermediate between the TP and OC limits, as previously shown experimentally for the tungsten complex. The electron transfer from the metal center to the lowest lying pi* ligand orbitals is found to be significantly smaller than for the Group 4 dianionic analogues. The geometrical change between [Zr(bp)(3)](2-) and [W(bp)(3)] is analyzed by means of a thermodynamic cycle and it is shown that a larger ligand-ligand repulsion plays an important role in favoring the distortion of the tungsten complex away from the TP structure.  相似文献   

15.
16.
17.
18.
19.
20.
Self-assembly processes between a tripodal ligand and Ln(III) cations have been investigated by means of supramolecular analytical methods. At an equimolar ratio of components, tetranuclear tetrahedral complexes are readily formed in acetonitrile. The structural analysis of the crystallographic data shows a helical wrapping of binding strands around metallic cations. The properties of this series of highly charged 3D compounds were examined by using NMR spectroscopy and optical methods in solution and in the solid state. In the presence of excess metal, a new trinuclear complex was identified. The X-ray crystal structure elucidated the coordination of metallic cations with two ligands of different conformations. By varying the metal/ligand ratio, a global speciation of this supramolecular system has been evidenced with different spectroscopic methods. In addition, these rather complicated equilibria were successfully characterised with the thermodynamic stability constants. A rational analysis of the self-assembly processes was attempted by using the thermodynamic free energy model and the impact of the ligand structure on the effective concentration is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号