首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Incorporating receptor flexibility is considered crucial for improvement of docking-based virtual screening. With an abundance of crystallographic structures freely available, docking with multiple crystal structures is believed to be a practical approach to cope with protein flexibility. Here we describe a successful application of the docking of multiple structures to discover novel and potent Chk1 inhibitors. Forty-six Chk1 structures were first compared in single structure docking by predicting the binding mode and recovering known ligands. Combinations of different protein structures were then compared by recovery of known ligands and an optimal ensemble of Chk1 structures were selected. The chosen structures were used in the virtual screening of over 60?000 diverse compounds for Chk1 inhibitors. Six novel compounds ranked at the top of the hits list were tested experimentally, and two of these compounds inhibited Chk1 activity-the best with an IC(50) value of 9.6 μM. Further study indicated that achieving a better enrichment and identifying more diverse compounds was more likely using multiple structures than using only a single structure even when protein structures were randomly selected. Taking into account conformational energy difference did not help to improve enrichment in the top ranked list.  相似文献   

2.
Inspired by the current representation of the ligand-receptor binding process, a normal-mode-based methodology is presented to incorporate receptor flexibility in ligand docking and virtual screening. However, the systematic representation of the deformation space grows geometrically with the number of modes, and furthermore, midscale loop rearrangements like those found in protein kinase binding pockets cannot be accounted for with the first lowest-frequency modes. We thus introduced a measure of relevance of normal modes on a given region of interest and showed that only very few modes in the low-frequency range are necessary and sufficient to describe loop flexibility in cAMP-dependent protein kinase. We used this approach to generate an ensemble of representative receptor backbone conformations by perturbing the structure along a combination of relevant modes. Each ensemble conformation is complexed with known non-native binders to optimize the position of the binding-pocket side chains through a full flexible docking procedure. The multiple receptor conformations thus obtained are used in a small-scale virtual screening using receptor ensemble docking. We evaluated this algorithm on holo and apo structures of cAMP-dependent protein kinase that exhibit backbone rearrangements on two independent loop regions close to the binding pocket. Docking accuracy is improved, since the ligands considered in the virtual screening docked within 1.5 A to at least one of the structures. The discrimination between binders and nonbinders is also enhanced, as shown by the improvement of the enrichment factor. This constitutes a new step toward the systematic integration of flexible ligand-flexible receptor docking tools in structure-based drug discovery.  相似文献   

3.
A major problem in structure-based virtual screening applications is the appropriate selection of a single or even multiple protein structures to be used in the virtual screening process. A priori it is unknown which protein structure(s) will perform best in a virtual screening experiment. We investigated the performance of ensemble docking, as a function of ensemble size, for eight targets of pharmaceutical interest. Starting from single protein structure docking results, for each ensemble size up to 500,000 combinations of protein structures were generated, and, for each ensemble, pose prediction and virtual screening results were derived. Comparison of single to multiple protein structure results suggests improvements when looking at the performance of the worst and the average over all single protein structures to the performance of the worst and average over all protein ensembles of size two or greater, respectively. We identified several key factors affecting ensemble docking performance, including the sampling accuracy of the docking algorithm, the choice of the scoring function, and the similarity of database ligands to the cocrystallized ligands of ligand-bound protein structures in an ensemble. Due to these factors, the prospective selection of optimum ensembles is a challenging task, shown by a reassessment of published ensemble selection protocols.  相似文献   

4.
Programmed cell death has been a fascinating area of research since it throws new challenges and questions in spite of the tremendous ongoing research in this field. Recently, necroptosis, a programmed form of necrotic cell death, has been implicated in many diseases including neurological disorders. Receptor interacting serine/threonine protein kinase 1 (RIPK1) is an important regulatory protein involved in the necroptosis and inhibition of this protein is essential to stop necroptotic process and eventually cell death. Current structure-based virtual screening methods involve a wide range of strategies and recently, considering the multiple protein structures for pharmacophore extraction has been emphasized as a way to improve the outcome. However, using the pharmacophoric information completely during docking is very important. Further, in such methods, using the appropriate protein structures for docking is desirable. If not, potential compound hits, obtained through pharmacophore-based screening, may not have correct ranks and scores after docking. Therefore, a comprehensive integration of different ensemble methods is essential, which may provide better virtual screening results. In this study, dual ensemble screening, a novel computational strategy was used to identify diverse and potent inhibitors against RIPK1. All the pharmacophore features present in the binding site were captured using both the apo and holo protein structures and an ensemble pharmacophore was built by combining these features. This ensemble pharmacophore was employed in pharmacophore-based screening of ZINC database. The compound hits, thus obtained, were subjected to ensemble docking. The leads acquired through docking were further validated through feature evaluation and molecular dynamics simulation.  相似文献   

5.
6.
Receptor flexibility is a critical issue in structure-based virtual screening methods. Although a multiple-receptor conformation docking is an efficient way to account for receptor flexibility, it is still too slow for large molecular libraries. It was reported that a fast ligand-centric, shape-based virtual screening was more consistent for hit enrichment than a typical single-receptor conformation docking. Thus, we designed a "distributed docking" method that improves virtual high throughput screening by combining a shape-matching method with a multiple-receptor conformation docking. Database compounds are classified in advance based on shape similarities to one of the crystal ligands complexed with the target protein. This classification enables us to pick the appropriate receptor conformation for a single-receptor conformation docking of a given compound, thereby avoiding time-consuming multiple docking. In particular, this approach utilizes cross-docking scores of known ligands to all available receptor structures in order to optimize the algorithm. The present virtual screening method was tested for reidentification of known PPARgamma and p38 MAP kinase active compounds. We demonstrate that this method improves the enrichment while maintaining the computation speed of a typical single-receptor conformation docking.  相似文献   

7.
8.
Structure-based virtual screening plays an important role in drug discovery and complements other screening approaches. In general, protein crystal structures are prepared prior to docking in order to add hydrogen atoms, optimize hydrogen bonds, remove atomic clashes, and perform other operations that are not part of the x-ray crystal structure refinement process. In addition, ligands must be prepared to create 3-dimensional geometries, assign proper bond orders, and generate accessible tautomer and ionization states prior to virtual screening. While the prerequisite for proper system preparation is generally accepted in the field, an extensive study of the preparation steps and their effect on virtual screening enrichments has not been performed. In this work, we systematically explore each of the steps involved in preparing a system for virtual screening. We first explore a large number of parameters using the Glide validation set of 36 crystal structures and 1,000 decoys. We then apply a subset of protocols to the DUD database. We show that database enrichment is improved with proper preparation and that neglecting certain steps of the preparation process produces a systematic degradation in enrichments, which can be large for some targets. We provide examples illustrating the structural changes introduced by the preparation that impact database enrichment. While the work presented here was performed with the Protein Preparation Wizard and Glide, the insights and guidance are expected to be generalizable to structure-based virtual screening with other docking methods.  相似文献   

9.
Lead Finder is a molecular docking software. Sampling uses an original implementation of the genetic algorithm that involves a number of additional optimization procedures. Lead Finder's scoring functions employ a set of semi-empiric molecular mechanics functionals that have been parameterized independently for docking, binding energy predictions and rank-ordering for virtual screening. Sampling and scoring both utilize a staged approach, moving from fast but less accurate algorithm versions to computationally more intensive but more accurate versions. Lead Finder includes tools for the preparation of full atom protein and ligand models. In this exercise, Lead Finder achieved 72.9% docking success rate on the Astex test set when the original author-prepared full atom models were used, and 74.1% success rate when the structures were prepared by Lead Finder. The major cause of docking failures were scoring errors resulting from the use of imperfect solvation models. In many cases, docking errors could be corrected by the proper protonation and the use of correct cyclic conformations of ligands. In virtual screening experiments on the DUD test set the early enrichment factor of several tens was achieved on average. However, the area under the ROC curve ("AUC ROC") ranged from 0.70 to 0.74 depending on the screening protocol used, and the separation from the null model was not perfect-0.12-0.15 units of AUC ROC. We assume that effective virtual screening in the whole range of enrichment curve and not just at the early enrichment stages requires more accurate solvation modeling and accounting for the protein backbone flexibility.  相似文献   

10.
We have used virtual screening to develop models for the binding of aryl substituted heterocycles to p38α MAPK. Virtual screening was conducted on a number of p38α MAPK crystal structures using a library of 46 known p38α MAPK inhibitors containing a heterocyclic core substituted by pyridine and fluorophenyl rings (structurally related to SB203580) and a set of decoy compounds. Multiple protonation states and tautomers of active and decoy compounds were considered. Each docking model was evaluated using receiver operating characteristic (ROC) curves and enrichment factors. The two best performing single crystal structures were found to be 1BL7 and 2EWA, with enrichment factors of 14.1 and 13.0 at 2 % of the virtual screen respectively. Ensembles of up to four receptors of similar conformations were generated, generally giving good or very good performances with high ROC AUCs and good enrichment. The 1BL7-2EWA ensemble was able to outperform each of its constituent receptors and gave high enrichment factors of 17.3, 12.0, 8.0 at 2, 5 and 10 % respectively, of the virtual screen. A ROC AUC of 0.94 was obtained for this ensemble. This method may be applied to other proteins where there are a large number of inhibitor classes with different binding site conformations.  相似文献   

11.
SAMPL3 fragment based virtual screening challenge provides a valuable opportunity for researchers to test their programs, methods and screening protocols in a blind testing environment. We participated in SAMPL3 challenge and evaluated our virtual fragment screening protocol, which involves RosettaLigand as the core component by screening a 500 fragments Maybridge library against bovine pancreatic trypsin. Our study reaffirmed that the real test for any virtual screening approach would be in a blind testing environment. The analyses presented in this paper also showed that virtual screening performance can be improved, if a set of known active compounds is available and parameters and methods that yield better enrichment are selected. Our study also highlighted that to achieve accurate orientation and conformation of ligands within a binding site, selecting an appropriate method to calculate partial charges is important. Another finding is that using multiple receptor ensembles in docking does not always yield better enrichment than individual receptors. On the basis of our results and retrospective analyses from SAMPL3 fragment screening challenge we anticipate that chances of success in a fragment screening process could be increased significantly with careful selection of receptor structures, protein flexibility, sufficient conformational sampling within binding pocket and accurate assignment of ligand and protein partial charges.  相似文献   

12.
Target-specific optimization of scoring functions for protein–ligand docking is an effective method for significantly improving the discrimination of active and inactive molecules in virtual screening applications. Its applicability, however, is limited due to the narrow focus on, e.g., single protein structures. Using an ensemble of protein kinase structures, the publically available directory of useful decoys ligand dataset, and a novel multi-factorial optimization procedure, it is shown here that scoring functions can be tuned to multiple targets of a target class simultaneously. This leads to an improved robustness of the resulting scoring function parameters. Extensive validation experiments clearly demonstrate that (1) virtual screening performance for kinases improves significantly; (2) variations in database content affect this kind of machine-learning strategy to a lesser extent than binary QSAR models, and (3) the reweighting of interaction types is of particular importance for improved screening performance. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.  相似文献   

14.
Kinase targets have been demonstrated to undergo major conformational reorganization upon ligand binding. Such protein conformational plasticity remains a significant challenge in structure-based virtual screening methodology and may be approximated by screening against an ensemble of diverse protein conformations. Maternal embryonic leucine zipper kinase (MELK), a member of serine-threonine kinase family, has been recently found to be involved in the tumerogenic state of glioblastoma, breast, ovarian, and colon cancers. We therefore modeled several conformers of MELK utilizing the available chemogenomic and crystallographic data of homologous kinases. We carried out docking pose prediction and virtual screening enrichment studies with these conformers. The performances of the ensembles were evaluated by their ability to reproduce known inhibitor bioactive conformations and to efficiently recover known active compounds early in the virtual screen when seeded with decoy sets. A few of the individual MELK conformers performed satisfactorily in reproducing the native protein-ligand pharmacophoric interactions up to 50% of the cases. By selecting an ensemble of a few representative conformational states, most of the known inhibitor binding poses could be rationalized. For example, a four conformer ensemble is able to recover 95% of the studied actives, especially with imperfect scoring function(s). The virtual screening enrichment varied considerably among different MELK conformers. Enrichment appears to improve by selection of a proper protein conformation. For example, several holo and unliganded active conformations are better to accommodate diverse chemotypes than ATP-bound conformer. These results prove that using an ensemble of diverse conformations could give a better performance. Applying this approach, we were able to screen a commercially available library of half a million compounds against three conformers to discover three novel inhibitors of MELK, one from each template. Among the three compounds validated via experimental enzyme inhibition assays, one is relatively potent (15; K(d) = 0.37 μM), one moderately active (12; K(d) = 3.2 μM), and one weak but very selective (9; K(d) = 18 μM). These novel hits may be utilized to assist in the development of small molecule therapeutic agents useful in diseases caused by deregulated MELK, and perhaps more importantly, the approach demonstrates the advantages of choosing an appropriate ensemble of a few conformers in pursuing compound potency, selectivity, and novel chemotypes over using single target conformation for structure-based drug design in general.  相似文献   

15.
The docking performance of the FRED and HYBRID programs are evaluated on two standardized datasets from the Docking and Scoring Symposium of the ACS Spring 2011 national meeting. The evaluation includes cognate docking and virtual screening performance. FRED docks 70?% of the structures to within 2?? in the cognate docking test. In the virtual screening test, FRED is found to have a mean AUC of 0.75. The HYBRID program uses a modified version of FRED's algorithm that uses both ligand- and structure-based information to dock molecules, which increases its mean AUC to 0.78. HYBRID can also implicitly account for protein flexibility by making use of multiple crystal structures. Using multiple crystal structures improves HYBRID's performance (mean AUC 0.80) with a negligible increase in docking time (~15?%).  相似文献   

16.
采用同源模建的方法构建了A1腺苷受体的三维结构,并与拮抗剂分子DPCPX对接,将得到的复合物结构进行5 ns的分子动力学模拟,以最后2 ns的平均结构和平衡后抽取的11帧构象共12个蛋白结构为研究对象,用包含52个活性分子和1000个诱饵分子的测试库,分别通过DOCK、VINA和GOLD三种对接软件进行评价,最终得出合理的蛋白质模型.根据top10%的富集因子(EF)和ROC曲线下面积(AU-ROC)的计算结果,我们认为GOLD是最适合A1腺苷受体的对接软件,而12个蛋白质结构中F5和Favg的三维结构模型比较合理,可以作为进一步大规模虚拟筛选的模型.  相似文献   

17.
18.
吕雯  吕炜  牛彦  雷小平 《物理化学学报》2009,25(7):1259-1266
采用同源模建方法对M1受体的三维结构进行了模拟, 将得到的模型分别与M受体完全激动剂乙酰胆碱和M1受体选择性激动剂占诺美林进行分子对接, 形成非特异性激动和特异性激动的受体-配体复合物. 用分子动力学模拟方法分别将未与小分子对接的M1受体、M1受体-乙酰胆碱复合物、M1受体-占诺美林复合物置于磷脂双膜中模拟10 ns. 将模拟后的蛋白质结构与包含活性分子的测试库对接并将结果打分, 以top5%富集因子(EF)作为评价依据, 用占诺美林优化后的M1受体模型的EF为8.0, 用乙酰胆碱优化后M1受体模型的EF为6.5, 非复合物的EF为1.5. 说明M1受体选择性激动剂复合物进行分子动力学模拟后得到的三维结构模型比较合理, 可以作为化合物虚拟筛选的模型对新化合物进行虚拟筛选, 为找到新的选择性M1受体激动剂奠定了基础.  相似文献   

19.
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein–ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号