首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   

2.
Wei Wei Zhu  Nian Bing Li  Hong Qun Luo   《Talanta》2007,72(5):1733-1737
A stannum film electrode has been developed for the simultaneous determination of trace levels of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry (DPASV). The stannum film electrode was generated in situ by depositing simultaneously the stannum film and the metals obtained by reduction of Cd(II) and Cr(III) at −1.4 V on a glassy carbon electrode. Then, the reduced products were oxidized by scanning the potential of the electrode from −1.4 to −0.4 V using DPASV. The electrode exhibited well-defined and separated stripping signals for both metals accompanied with a low background contribution. The possible mechanism of this design was proposed. Under the optimized working conditions, the detection limit was 2.0 and 1.1 μg l−1 for Cr(III) and Cd(II) at a deposition time of 3 min. Finally, the stannum film electrode was successfully applied to the determination of Cd(II) in tap water with satisfactory results.  相似文献   

3.
Multiwall carbon nanotubes were dispersed in Nafion (MWCNTs‐NA) solution and used in combination with bismuth (MWCNTs‐NA/Bi) for fabricating composite sensors to determine trace Pb(II) and Cd(II) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the MWCNTs‐NA/Bi composites film modified glassy carbon electrode (GCE) were evaluated. The synergistic effect of MWCNTs and bismuth composite film was obtained for Pb(II) and Cd(II) detection with improved sensitivity and reproducibility. Linear calibration curves ranged from 0.05 to 100 μg/L for Pb(II) and 0.08 to 100 μg/L for Cd(II). The determination limits (S/N=3) were 25 ng/L for Pb and 40 ng/L for Cd, which compared favorably with previously reported methods in the area of electrochemical Pb(II) and Cd(II) detection. The MWCNTs‐NA/Bi composite film electrodes were successfully applied to determine Pb(II) and Cd(II) in real sample, and the results of the present method agreed well with those of atomic absorption spectroscopy.  相似文献   

4.
A new graphite-epoxy composite electrode (GECE) containing Bi(NO(3))(3) as a built-in bismuth precursor for simultaneous and individual anodic stripping analysis of heavy trace metals like lead and cadmium is reported. The developed Bi(NO(3))(3)-GECE is compatible with bismuth film electrodes reported previously including the composite electrodes (Bi-GECE) recently reported by our group. Bi(NO(3))(3)-GECE displays the ability for the detection of both individual and simultaneous determination of heavy trace metals and exhibits well defined, reproducible and sharp stripping signals. The sensitive response is combined with the minimal toxicity of Bi(NO(3))(3). This novel sensor would be an appropriate alternative tool to sensors using bismuth in solution during their utilization in environmental quality monitoring as well as other applications.  相似文献   

5.
An anodic stripping voltammetric procedure for the determination of Cu(II) at an in situ-plated stannum film electrode (SnFE) was described. The results indicated that the SnFE had an attractive electroanalytical performance, with two distinct voltammetric stripping signals for copper and stannum, and showed the superior advantage for the determination of copper compared with the bismuth film electrode. Several experimental parameters were optimized. The SnFE exhibited highly linear behavior in the concentration range from 1.0 to 100.0 μg L−1 of Cu(II) (r = 0.994) with the detection limit of 0.61 μg L−1 (S/N = 3), and the relative standard deviation for a solution containing 40.0 μg L−1 Cu(II) was 2.2% (n = 8). The procedure has been successfully applied for the determination of Cu(II) in lake water sample.  相似文献   

6.
A high‐sensitivity sensing platform for lead(II) and cadmium(II) based on the bismuth modified carbon nanotubes (CNTs)‐poly(sodium 4‐styrenesulfonate) composite film electrode (CNTs‐PSS/Bi) was fabricated. The composite film CNTs‐PSS/Bi provided remarkably improved sensitivity and reproducibility compared with previously reported CNTs‐modified electrodes. The detection limits were estimated to be 0.04 ppb for lead(II) and 0.02 ppb for cadmium(II) with a preconcentration time of 120 s, respectively. The linear responses of Cd2+ and Pb2+ were over the ranges of 0.5–50 ppb and 0.5–90 ppb, respectively. Finally, the practical application of the proposed method was verified in the real water sample with satisfactory results.  相似文献   

7.
A highly sensitive and simple electroanalytical methodology is presented using an in-situ bismuth film modified edge plane pyrolytic graphite electrode (BiF-EPPGE) which is exemplified with the simultaneous determination of cadmium(II) and lead(II). Square-wave anodic stripping voltammetry is utilised with the effects of several experimental variables studied. Simultaneous additions of cadmium(II) and lead(II) were investigated where two linear ranges between 0.1-100 and 0.1-300 microg/L and also detection limits of 0.062 and 0.084 microg/L were obtained, respectively. The method was then successfully applied to the simultaneous determination of cadmium(II) and lead(II) in spiked river water, where recoveries of 100.5 and 98% were obtained, respectively. This electroanalytical protocol using edge plane pyrolytic graphite electrodes is one of the simplest methodologies to date using non-mercury based electrodes and is simpler and cheaper than alternatives such as carbon nanotube electrode arrays, suggesting the use of edge plane pyrolytic graphite electrode for routine sensing.  相似文献   

8.
We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1 M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 μg/L for lead and 0.49 μg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.  相似文献   

9.
The bismuth‐coated electrode is known to be prone to errors caused by copper(II). This study investigates copper(II) interference at bismuth film electrode for the detection of lead(II) and cadmium(II). It was conducted using glassy carbon electrode, while the bismuth film was plated in situ simultaneously with the target metal ions at ? 1200 mV. Copper(II) presented in solution significantly reduced the sensitivity of the electrode, for example there was an approximately 70 % and 90 % decrease in peak signals for lead(II) and cadmium(II), respectively, at a 10‐fold molar excess of copper(II). The decrease in sensitivity was ascribed to the competition between copper and bismuth or the metal ions for surface active sites. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) analysis suggested a large decrease in the amount of bismuth nanoparticles formed on the electrode surface in the presence of copper(II) occurred, validating the competition between copper and bismuth ions for surface active sites. Recovery of the stripping signal of lead(II) and cadmium(II) was obtained by adding ferrocyanide ion to the solution. Finally, the proposed method was successfully applied to determine lead(II) and cadmium(II) in water samples and the method was validated by ICP‐MS technique.  相似文献   

10.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

11.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

12.
An in-situ antimony film screen-printed carbon electrode (in-situ SbSPCE) was successfully used for the determination of Cu(II) simultaneously with Cd(II) and Pb(II) ions, by means of differential pulse anodic stripping voltammetry (DPASV), in a certified reference groundwater sample with a very high reproducibility and good trueness. This electrode is proposed as a valuable alternative to in-situ bismuth film electrodes, since no competition between the electrodeposited copper and antimony for surface sites was noticed. In-situ SbSPCE was microscopically characterized and experimental parameters such as deposition potential, accumulation time and pH were optimized. The best voltammetric response for the simultaneous determination of Cd(II), Pb(II) and Cu(II) ions was achieved when deposition potential was −1.2 V, accumulation time 120 s and pH 4.5. The detection and quantification limits at levels of μg L−1 suggest that the in-situ SbSPCE could be fully suitable for the determination of Cd(II), Pb(II) and Cu(II) ions in natural samples.  相似文献   

13.
We report that highly effective electrode modification can be achieved by sparking process between a flat electrode substrate and a tip counter electrode. The concept is introduced by the development of Bi2O3-modified graphite screen printed electrodes (SPEs). SPEs were sparked with a bismuth wire at 1.2 kV under atmospheric conditions. The effect of polarity on the morphology of the sensing surface, bismuth loading and the sensitivity of the resulting sensors for the simultaneous anodic stripping voltammetric determination of Cd(II) and Pb(II) was investigated. Compared with electroplated and various bismuth precursors bulk-modified SPEs, the developed sparked electrodes exhibited considerably lower limit of detection (0.2 μg L 1, S/N = 3) for each target ion. Therefore, sparking technique offers a facile and green approach for the development of highly sensitive bismuth-based electrodes, and a wide-scope of applicability in the development of metal-modified sensing surfaces.  相似文献   

14.
《Electroanalysis》2004,16(9):719-723
A bismuth bulk electrode (BiBE), a new solid‐state electrode, is presented. The polycrystalline metal bismuth disk‐shaped electrode was examined for its anodic stripping voltammetry performance, which was found to be well comparable to that achieved with the bismuth or mercury film electrodes. Useful potential windows of the BiBE in aqueous solutions of pH 1 to 13 were found to range from approximately ?1.7 to ?0.1 V, depending on pH, where either hydrogen evolution or anodic dissolution of metallic bismuth limit the electrochemical inertness of the BiBE. Employing cyclic voltammetry (CV), the cathodic behavior of the BiBE was examined by testing inorganic (cadmium(II) ions) and organic (2‐nitrophenol) model compounds; a CV quasi‐reversible behavior was recorded in the case of the Cd(II)‐Cd(0) couple. The characteristics of the BiBE under anodic conditions, i.e., at bismuth surface coated with a thin conductive Bi2O3 film, was examined by testing two well‐established redox systems, potassium hexacyanoferate(III) and ruthenium(III) hexaaminechloride; a nearly reversible behavior was recorded in the latter case. Based on the presented preliminary results, BiBE can be considered as an interesting alternative to common solid and (toxic) mercury electrodes for possible use in electrochemical studies and electroanalytical applications.  相似文献   

15.
Voltammetric sensors based on bismuth film electrodes are an attractive alternative to other sensors for application in electroanalysis of heavy metals. Bismuth film electrodes can be formed by a similar method on the same substrates as mercury. These systems were used most frequently for simultaneous determination of heavy metals such as Pb, Cd and Zn by anodic stripping voltammetry. Our voltammetric sensor was fabricated on an alumina substrate. A photoresist film prepared by pyrolysis of positive photoresist S‐1813 SP15 on the alumina substrate was used as an electrode support for bismuth film deposition. The influence of the Nafion membrane on the measurement sensitivity of the sensor and mechanical stability of the bismuth film were investigated. The sensor was successfully applied for determination of Pb, Cd and Zn in an aqueous solution in the concentration range of 0.2 to 10 µg L?1 by square wave anodic stripping voltammetry on an in‐situ formed bismuth film electrode with Nafion‐coating. Parameters of the sensor such as sensitivity, linearity, detection limit, repeatability and life‐time were evaluated. In the best case, the detection limits were estimated as 0.07, 0.11 and 0.63 µg L?1 for Pb, Cd and Zn, respectively. Finally, the applicability of the sensor was tested in analysis of Pb, Cd and Zn in real samples of tap and river water using the method of standard additions.  相似文献   

16.
Kadara RO  Tothill IE 《Talanta》2005,66(5):1089-1093
As copper(II) is a common ion in a variety of analytical samples, its effect on the stripping response of lead(II) at bismuth film screen-printed carbon electrode (BFSPCE) was investigated. The study was conducted using a screen-printed three-electrode system (working, counter and reference electrodes), with the carbon-working electrode plated in situ with bismuth film. Copper present at significant concentration level in samples was found to affect the sensitivity of the electrode by reducing the constant current stripping chronopotentiometric (CCSCP) response of lead(II). Recovery of the lead stripping response at the BFSPCE in the presence of copper was obtained when 0.1 mM ferricyanide was added to the test solution. The ferricyanide added circumvents the detrimental effect of copper(II) by selectively masking the copper ions by forming a complex. The analytical utility of the procedure is illustrated by the stripping chronopotentiometric determinations of lead(II) in soil extracts.  相似文献   

17.
The key to remediative processes is the ability to measure toxic contaminants on-site using simple and cheap sensing devices, which are field-portable and can facilitate more rapid decision-making. A three-electrode configuration system has been fabricated using low-cost screen-printing (thick-film) technology and this coupled with a portable electrochemical instrument has provided a a relatively inexpensive on-site detector for trace levels of toxic metals. The carbon surface of the screen-printed working electrode is used as a substrate for in situ deposition of a metallic film of bismuth, which allows the electrochemical preconcentration of metal ions. Lead and cadmium were simultaneously detected using stripping chronopotentiometry at the bismuth film electrode. Detection limits of 8 and 10 ppb were obtained for cadmium(II) and lead(II), respectively, for a deposition time of 120 s. The developed method was applied to the determination of lead and cadmium in soils extracts and wastewaters obtained from polluted sites. For comparison purposes, a mercury film electrode and ICP-MS were also used for validation.  相似文献   

18.
A multiwalled carbon nanotubes–sodium dodecyl benzene sulfonate (MWCNTs–NaDBS) modified stannum film electrode was employed for the determination of cadmium(II) and zinc(II). The Sn/MWCNTs‐NaDBS film electrode was prepared by applying MWCNTs–NaDBS suspension to the surface of the GCE, while the Sn film was plated in situ simultaneously with the target metal ions. Under optimal conditions, linear calibration curves were obtained in a range of 5.0 ?100.0 μg L?1 with detection limits of 0.9 μg L?1 for zinc(II) and 0.8 μg L?1 for cadmium(II), respectively. This film electrode was successfully applied to the determination of Zn(II) and Cd(II) in tap water sample.  相似文献   

19.
在玻碳电极上采用电化学沉积法制备了新型铕离子掺杂普鲁士蓝复合铋膜电极,建立了用示差脉冲阳极溶出法测定环境水样中痕量铟的分析方法。讨论了铟在常规铋膜电极和复合铋膜电极上的溶出性能,对铋膜的厚度、支持电解质、测定底液的pH、富集时间和富集电位等参数进行了优化。在最佳实验条件下,铟的阳极溶出峰电流与其浓度在2~20μg/L和20~100μg/L范围内分别呈良好的线性关系,检测下限为0.15μg/L(S/N=3),相对标准偏差RSD2.0%。该法用于实际水样中痕量铟的测定,样品回收率为97.5%~103%。  相似文献   

20.
A new electrode surface design, the bismuth film electrode (BiFE), is presented as a promising alternative to mercury and other solid electrodes for direct cathodic electrochemical detection of organic compounds. The preparation of the BiFE, involving an ex situ electroplating of metallic bismuth onto a glassy carbon (GC) substrate electrode, was optimised. The useful negative potential windows of the BiFE in the pH range 1 (−0.2 to −0.8 V vs Ag/AgCl) to 10 (−0.2 to −1.5 V) were determined. The reproducibility of measuring 2-nitrophenol as a model compound (relative standard deviation, r.s.d., n=10) was found to be 0.5% at the same BiFE, and 1.0% at successive newly prepared BiFEs. No polishing or any other pre-treatment of the substrate GC surface was required prior to re-plating of a new Bi film. The BiFE showed similar or even favourable voltammetric behaviour when compared to mercury and bare GC electrodes, and was successfully tested for amperometric detection under hydrodynamic conditions. The results revealed that BiFE is an attractive new non-mercury metallic electrode particularly suitable for cathodic electrochemical detection in flow analytical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号