首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A thalidomide analog, (4‐(1,3‐dioxo‐1,3‐dihydro‐2H‐isoindol‐2‐yl)‐N ′‐[(4‐ethoxyphenyl) methylidene] benzohydrazide), has been identified as a promising broad‐spectrum anti‐inflammatory agent in previous study. In this study, a sensitive and selective UPLC‐MS/MS assay was developed and validated for its determination in rat plasma samples. The chromatographic separation was performed on an Aquity BEH C18 column using mobile phase comprising of acetonitrile and 10 mm ammonium acetate in the ratio of 85: 15, at flow rate of 0.3 mL/min. The detection and quantification were performed in positive multiple reaction monitoring mode by parent to daughter ion transition of 414.06 ˃ 148.05 for analyte and 411.18 ˃ 191.07 for internal standard (risperidone), respectively using electrospray ionization source. The sample extraction process consisted of liquid–liquid extraction method using diethyl ether as the extracting solvent. The assay was validated by following FDA guidelines and all parameters were found to be within acceptable limits. The linearity was between 10.1 and 2500 ng/mL and the lower limit of quantification was 10.1 ng/mL. The reported results indicate that the assay could meet the requirement for analysis of this compound in amounts expected to the present in actual samples. Further, in vitro metabolic stability study was performed in rat liver microsomes by using the validated assay.  相似文献   

2.
Tedizolid (TDZ) is a novel oxazolidinone class antibiotic, indicated for the treatment of acute bacterial skin and skin structure infections in adults. In this study a highly sensitive UPLC‐MS/MS assay was developed and validated for the determination of TDZ in rat plasma using rivaroxaban as an internal standard (IS). Both TDZ and IS were separated on an Acquity UPLC BEH? C18 column using an isocratic mobile phase comprising of acetonitrile–20 mm ammonium acetate (85:15, v/v), eluted at 0.3 mL/min flow rate. The plasma sample was processed by liquid liquid extraction technique using ethyl acetate as an extracting agent. The analyte and IS were detected in positive mode using electrospray ionization source. The precursor to product ion transitions at m/z 371.09 > 343.10 for TDZ and m/z 435.97 > 144.94 for IS were used for the quantification in multiple reaction monitoring mode. The calibration curve was linear in the concentration range of 0.74–1500 ng/mL and the lower limit of quantification was 0.74 ng/mL only. The developed assay was validated following standard guidelines for bioanalytical method validation (US Food and Drug Administration) and all the validation results were within the acceptable limits. The developed assay was successfully applied into a pharmacokinetic study in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and sensitive ultra‐high performance liquid chromatography–mass spectrometry (UPLC‐MS/MS) method was developed and validated for the quantification of 10 major active constituents in rat urine after oral administration of Shensong Yangxin Capsule (SSYX) using diazepam as an internal standard (IS). The urine samples were pretreated and extracted by solid‐phase extraction prior to UPLC. Chromatographic separation was achieved on a Waters C18 (2.1 × 50 mm, 1.7 µm) column using a gradient elution program with 0.1% formic acid aqueous solution and acetonitrile at a flow rate of 0.4 mL/min. Detection and quantitation were accomplished by a hybrid quadrupole mass spectrometer using electrospray ionization source and multiple reaction monitoring in the positive ionization mode. The mass transition ion‐pairs (m/z) for quantitation were all optimized and the total run time was 4.50 min. The specificity, linearity, accuracy, precision, recovery, matrix effect and stabilities were all validated for the analytes in urine samples. The validation results indicated that this method was simple, rapid, specific and reliable. The proposed method was successfully applied to investigate the urinary excretion kinetics of 10 compounds in rat after oral administration of SSYX. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, selective and sensitive method using UPLC‐MS/MS was first developed and validated for quantitative analysis of koumine in rat plasma. A one‐step protein precipitation with methanol was employed as a sample preparation technique. Plasma samples were separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, i.d. 1.7 µm) with a gradient mobile phase consisting of methanol with 0.1% (v/v) formic acid and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Detection and quantification were performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization. Good linearity (r > 0.9997) was achieved using weighted (1/x2) least squares linear regression over a concentration range of 0.025–15 µg/mL with a lower limit of quantification of 0.025 µg/mL for koumine. The intra‐ and inter‐ precisions (relative standard deviation) of the assay at all three quality control samples were 5.6–14.1% with an accuracy (relative error) of 5.0–14.0%, which meets the requirements of the US Food and Drug Administration guidance. This developed method was successfully applied to an in vivo pharmacokinetic study in rats after a single intravenous dose of 20 mg/kg koumine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive, selective and high‐throughput UPLC‐MS/MS method was developed and validated for the determination of a novel c‐Met tyrosine kinase inhibitor, QBH‐196, in rat plasma. QBH‐196 and its analog BH357 (IS) were extracted from rat plasma using a mixture of dichloromethane and N‐hexane (2:3, v/v). The chromatographic separation was carried out on Phenomenex C18 column (50 × 2.1 mm, 2.6 µm particle size) with a gradient mobile phase of methanol (A) and water containing 0.05% formic acid (B) at a flow rate of 0.2 mL/min. The assay was performed by positive electrospray ionization in multiple reaction monitoring mode using transitions of m/z 622.68 → 140.41 for QBH‐196 and m/z 591.19 →126.21 for the IS, respectively. Good linearity was obtained over the concentration range of 8.0–4000 ng/mL (r2 > 0.99) for QBH‐196 and the lower limit of quantification was 8.0 ng/mL in rat plasma. Validations of the method, including its sensitivity, extraction recovery, matrix effect, intra‐ and inter‐day precision, accuracy and stability, were all within acceptable limits. The established method was successfully applied to determine absolute oral bioavailability of QBH‐196 in rats for the first time. The mean oral absolute bioavailability of QBH‐196 was found to be about 40.8% and the elimination half‐life was 40.0 ± 13.1 h. This result suggested that QBH‐196 exhibits good oral absorption in vivo, which is very important for the further development of QBH‐196 as a new oral anticancer drug. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A reliable high‐throughput ultra‐high performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for oleanolic acid (OA) determination in rat plasma and liver tissue using glycyrrhetic acid as the internal standard (IS). Plasma and liver homogenate samples were prepared using solid‐phase extraction. Chromatographic separation was achieved on a C18 column using an isocratic mobile phase system. The detection was performed by multiple reaction monitoring mode via positive electrospray ionization interface. The calibration curves showed good linearity (R2 > 0.9997) within the tested concentration ranges. The lower limit of quantification for plasma and liver tissue was ≤0.75 ng/mL. The intra‐ and inter‐day precision and accuracy deviations were within ±15% in plasma and liver tissue. The mean extraction recoveries ranged from 80.8 to 87.0%. In addition, the carryover, matrix effect, stability and robustness involved in the method were also validated. The method was successfully applied to the plasma and hepatic pharmacokinetics of OA after oral administration to rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Stellera chamaejasme L. has been used as a traditional Chinese medicine for the treatment of scabies, tinea, stubborn skin ulcers, chronic tracheitis, cancer and tuberculosis. A sensitive and selective ultra‐high liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for the simultaneous determination of five flavonoids (stelleranol, chamaechromone, neochamaejasmin A, chamaejasmine and isochamaejasmin) of S. chamaejasme L. in rat plasma. Chromatographic separation was accomplished on an Agilent Poroshell 120 EC‐C18 column (2.1 × 100 mm, 2.7 μm) with gradient elution at a flow rate of 0.4 mL/min and the total analysis time was 7 min. The analytes were detected using multiple reaction monitoring in positive ionization mode. The samples were prepared by liquid–liquid extraction with ethyl acetate. The UPLC‐MS/MS method was validated for specificity, linearity, sensitivity, accuracy and precision, recovery, matrix effect and stability. The validated method exhibited good linearity (r ≥ 0.9956), and the lower limits of quantification ranged from 0.51 to 0.64 ng/mL for five flavonoids. The intra‐ and inter‐day precision were both <10.2%, and the accuracy ranged from −11.79 to 9.21%. This method was successfully applied to a pharmacokinetic study of five flavonoids in rats after oral administration of ethyl acetate extract of S. chamaejasme L.  相似文献   

8.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This study presents a simple and sensitive high‐throughput matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (MALDI‐MS/MS) method for ex vivo quantification of methylphenidate (MPH) in rat plasma and brain. The common MALDI matrix alpha‐cyano‐4‐hydroxycinnamic acid was used to obtain an optimal dried droplet preparation. For method validation, standards diluted in plasma and brain homogenate prepared from untreated (control) rats were used. MPH was quantified within a concentration range of 0.1–40 ng/ml in plasma and 0.4–40 ng/ml in brain homogenate with an excellent linearity (R2 ≥ 0.9997) and good precision. The intra‐day and inter‐day accuracies fulfilled the FDA's ±15/20 critera. The recovery of MPH ranged from 93.8 to 98.5% and 87.2 to 99.8% in plasma and homogenate, respectively. We show that MPH is successfully quantified in plasma and brain homogenate of rats pre‐treated with this drug using the internal standard calibration method. By means of this method, a linear correlation between plasma and brain concentration of MPH in rodents pre‐treated with MPH was detected. The simple sample preparation based on liquid‐liquid extraction and MALDI‐MS/MS measurement requires approximately 10 s per sample, and this significantly reduces analysis time compared with other analytical methods. To the best of our knowledge, this is the first MALDI‐MS/MS method for quantification of MPH in rat plasma and brain. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

14.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, a sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method for determination of hupehenine in rat plasma was developed and validated. After addition of imperialine as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 416.3 → 98.0 for hupehenine, and m/z 430.3 → 138.2 for IS. Calibration plots were linear throughout the range 2–2000 ng/mL for hupehenine in rat plasma. Mean recoveries of hupehenine in rat plasma ranged from 92.5 to 97.3%. Relative standard deviations of intra‐day and inter‐day precision were both <6%. The accuracy of the method was between 92.7 and 107.4%. The method was successfully applied to a pharmacokinetic study of hupehenine after either oral or intravenous administration. For the first time, the bioavailability of hupehenine was reported as 13.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Cucurbitacin B (CuB), one of the most abundant forms of cucurbitacins, is a promising natural anticancer drug candidate. Although the anticancer activity of CuB has been well demonstrated, information regarding the pharmacokinetics is limited. A rapid, selective and sensitive UPLC‐MS/MS for CuB was developed and validated using hemslecin A (HeA) as internal standard (IS). Plasma samples were pre‐treated by liquid–liquid extraction with dichloromethane. Separation was achieved on a reversed‐phase C18 column (50 × 4.6 mm, 5 µm) at 35°C using isocratic elution with water–methanol (25:75, v/v) at a flow rate of 0.3 mL/min. The analytes were monitored by a triple quadrupole tandem mass spectrometer with positive electrospray ionization mode. The calibration curve was linear (r > 0.995) in a concentration range of 0.3–100 ng/mL with a limit of quantification of 0.3 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by percentage relative error and relative standard deviation, respectively, which were both lower than the limit of 15%. This assay was successfully applied to a pharmacokinetic study of CuB in Wistar rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
An ultra‐high‐performance liquid chromatography–mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine‐N‐oxide (TMAO) simultaneously with TMAO‐related molecules l ‐carnitine and γ‐butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)‐type column with ammonium acetate–acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A fast, sensitive and reliable ultra performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantitation and pharmacokinetic study of five tanshinones (tanshinone I, tanshinone IIA, tanshinone IIB, dihydrotanshinone I, cryptotanshinone), the bio‐active ingredients of Huo Luo Xiao Ling Dan (HLXLD) in rat plasma. After liquid–liquid extraction, chromatographic separation was accomplished on a Shim‐pack XR‐ODS column (75 × 3.0 mm, 2.2 µm particles) and eluted with a mobile phase consisting of acetonitrile–0.05% formic acid aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min, and the total run time was 7.0 min. The detection was performed on a triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source in positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.050–0.400 ng/mL for all the analytes. Linearity, precision and accuracy, the mean extraction recoveries and matrix effects all satisfied criteria for acceptance. This validated method was successfully applied to a comparative pharmacokinetic study of five bio‐active components in rat plasma after oral administration of HLXLD or Salvia miltiorrhiza extract in normal and arthritic rats. The results showed that there were different pharmacokinetic characteristics among different groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号