首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐performance liquid chromatographic (HPLC) method for enantioseparation of bupropion was developed using two isothiocyanate‐based chiral derivatizing reagents, (S)‐1‐(1‐naphthyl) ethyl isothiocyanate, (S)‐NEIT, and (R)‐α‐methyl benzyl isothiocyanate, (R)‐MBIT. The diastereomers synthesized with (S)‐NEIT were enantioseparated by reversed‐phase HPLC using gradient elution with mobile phase containing water and acetonitrile, whereas diastereomers synthesized with (R)‐MBIT were enantioseparated using triethyl amine phosphate buffer and methanol. Derivatization conditions were optimized and the method was validated for accuracy, precision and limit of detection. The limit of detection was found to be 0.040–0.043 µg/mL for each of the diastereomers prepared with (S)‐NEIT. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Enantioresolution of the calcimimetic drug (R,S)‐Cinacalcet was achieved using both indirect and direct approaches. Six chiral variants of Marfey's reagent having l ‐Ala‐NH2, l ‐Phe‐NH2, l ‐Val‐NH2, l ‐Leu‐NH2, l ‐Met‐NH2 and d ‐Phg‐NH2 as chiral auxiliaries were used as derivatizing reagents under microwave irradiation. Derivatization conditions were optimized. Reversed‐phase high‐performance liquid chromatography was successful using binary mixtures of aqueous trifluoroacetic acid and acetonitrile for separation of diastereomeric pairs with detection at 340 nm. Thin silica gel layers impregnated with optically pure l ‐histidine and l ‐arginine were used for direct resolution of enantiomers. The limit of detection was found to be 60 pmol in HPLC while in TLC it was found to be in the range of 0.26–0.28 µg for each enantiomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
(S)‐Naproxen was used to synthesize a chiral reagent, (S)‐2‐(6‐methoxynaphthalen‐2‐yl)propanehydrazide, by itsreaction with hydrazine hydrate in the presence of dicyclohexylcarbodiimide as coupling agent. The reagent was characterized and its chiral purity was established. It was used as a chiral derivatizing reagent for the synthesis of hydrazone diastereomers, under microwave irradiation, of certain chiral aldehydes and ketones. The respective diastereomers were separated by reversed‐phase high‐performance liquid chromatography using a binary solvent combination containing trifluoroacetic acid. The diastereomers were detected at 231 nm. The method was validated for accuracy, precision, and limit of detection (LOD). For a series of hydrazones the LOD was found to be in the range 1.62–1.65 pmol/mL. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
(R)‐(+)‐naphthylethyl amine and (S)‐(+)‐1‐benzyl‐3‐aminopyrrolidine were incorporated as chiral auxiliaries, by nucleophilic substitution of chlorine atoms, in cyanuric chloride (CC) or its 6‐butoxy derivative. There were obtained four new chiral derivatizing reagents (CDRs) as two dichloro and two monochloro triazine reagents. The CDRs so obtained were characterized and their optical purity was ascertained. Diastereomers of dl ‐selenomethionine were synthesized under microwave irradiation for 60 or 90 s (at 80% power of 800 W). Reversed‐phase high‐performance liquid chromatographic separation of diastereomers was carried out on a C18 column using mixtures of acetonitrile with aqueous trifluoroacetic acid as mobile phase. The detection was made at 230 nm using a photodiode array detector. The separation behaviors in terms of retention times and resolutions were compared. The separation method was validated for limit of detection, linearity, accuracy, precision, and recovery. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Eleven chiral derivatizing reagents (CDRs) were used for preparation of diastereomers of (R,S)‐mexiletine containing a primary amino group in close proximity to the stereogenic center. One anhydride, namely [(S,S)‐O,O'‐di‐p‐toluoyl tartaric acid anhydride] was synthesized and (S)‐naproxen was used as such as the chiral derivatizing reagent. The other nine CDRs were synthesized by substituting one of the fluorine atoms in 1,5‐difluoro‐2,4‐dinitrobenzene with six amino acid amides and three amino acids. The diastereomers were separated by reversed‐phase high‐performance liquid chromatography. The method was validated for linearity, accuracy, limit of detection and limit of quantification. The limit of detection was found in the range of 10–30 pmol. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper extends the research of the utilization of borate coordination complexes in chiral separation by counter‐current chromatography (CCC). Racemic propafenone was successfully enantioseparated by CCC with di‐n‐butyl l ‐tartrate combined with boric acid as the chiral selector. The two‐phase solvent system was composed of chloroform/ 0.05 mol/L acetate buffer pH 3.4 containing 0.10 mol/L boric acid (1:1, v/v), in which 0.10 mol/L di‐n‐butyl l ‐tartrate was added in the organic phase. The influence of factors in the enantioseparation of propafenone were investigated and optimized. A total of 92 mg of racemic propafenone was completely enantioseparated using high‐speed CCC in a single run, yielding 40–42 mg of (R)‐ and (S)‐propafenone enantiomers with an HPLC purity over 90–95%. The recovery for propafenone enantiomers from fractions of CCC was in the range of 85–90%.  相似文献   

7.
In this study, a series of chiral stationary phases based on N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine amide, whose enantiorecognition property has never been studied, were synthesized. Their enantioseparation abilities were chromatographically evaluated by 67 enantiomers. The chiral stationary phase derived from N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine showed much better enantioselectivities than that based on N‐(4‐methylbenzoyl)‐l ‐leucine amide. The construction of C2 symmetric chiral structure greatly improved the enantiorecognition performance of the stationary phase. The C2 symmetric chiral stationary phase exhibited superior enantioresolutions to other chiral stationary phases for most of the chiral analytes, especially for the chiral analytes with C2 symmetric structures. By comparing the enantioseparations of the enantiomers with similar structures, the importance of hydrogen bond interaction, π–π interaction, and steric hindrance on enantiorecognition was elucidated. The enantiorecognition mechanism of transN,N′‐(1,2‐diphenyl‐1,2‐ethanediyl)bis‐acetamide, which had an excellent separation factor on the C2 symmetric chiral stationary phase, was investigated by 1H‐NMR spectroscopy and 2D 1H‐1H nuclear overhauser enhancement spectroscopy.  相似文献   

8.
Separation of racemic mixture of (RS)‐bupropion, (RS)‐baclofen and (RS)‐etodolac, commonly marketed racemic drugs, has been achieved by modifying the conventional ligand exchange approach. The Cu(II) complexes were first prepared with a few l ‐amino acids, namely, l ‐proline, l ‐histidine, l ‐phenylalanine and l ‐tryptophan, and to these was introduced a mixture of the enantiomer pair of (RS)‐bupropion, or (RS)‐baclofen or (RS)‐etodolac. As a result, formation of a pair of diastereomeric complexes occurred by ‘chiral ligand exchange’ via the competition between the chelating l ‐amino acid and each of the two enantiomers from a given pair. The diastereomeric mixture formed in the pre‐column process was loaded onto HPLC column. Thus, both the phases during chromatographic separation process were achiral (i.e. neither the stationary phase had any chiral structural feature of its own nor did the mobile phase have any chiral additive). Separation of diastereomers was successful using a C18 column and a binary mixture of MeCN and TEAP buffer of pH 4.0 (60:40, v/v) as mobile phase at a flow rate of 1 mL/min and UV detection at 230 nm for (RS)‐Bup, 220 nm for (RS)‐Bac and 223 nm for (RS)‐Etd. Baseline separation of the two enantiomers was obtained with a resolution of 6.63 in <15 min. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Diastereomers of 18 proteinogenic amino acids were synthesized under microwave irradiation and by vortexing using (S)‐naproxen–benzotriazole as chiral derivatizing reagent. The diastereomers synthesized by two approaches were found to be identical in terms of their characterization and chromatographic data. A linear gradient of triethylammonium phosphate (pH 3.5)–acetonitrile (30–65%, within 35 min) was found to be successful using reversed‐phase high‐performance liquid chromatography for their separation. Detection was carried out at 231 nm and sharp peaks were obtained. The method was validated for accuracy, precision and limit of detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A bioanalytical method for indirect determination of eflornithine enantiomers in 75 μL human plasma has been developed and validated. l ‐ and d ‐eflornithine were derivatized with o‐phthalaldehyde and N‐acetyl‐L‐cysteine to generate diastereomers which were separated on two serially connected Chromolith Performance columns (RP‐18e 100 × 4.6 mm i.d.) by a isocratic flow followed by a gradient flow for elution of endogenous compounds. The diastereomers were detected with UV (340 nm). The between‐day precisions for L‐ and D‐eflornithine in plasma were 8.4 and 2.3% at 3 μm , 4.0 and 5.1% at 400 μm , and 2.0 and 3.7% at 1000 μm . The lower limit of quantification was determined to be 1.5 μm , at which precision was 14.9 and 9.9% for L‐ and D‐eflornithine, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Diastereomers of racemic β‐adrenolytic drugs [namely (RS)‐propranolol, (RS)‐metoprolol and (RS)‐atenolol] were synthesized under microwave irradiation with (S)‐ketoprofen based chiral derivatization reagents (CDRs) newly synthesized for this purpose. (S)‐Ketoprofen was chosen for its high molar absorptivity (εo ~ 40,000) and its availability as a pure (S)‐enantiomer. Its ‐COOH group was activated with N‐hydroxysuccinimide and N‐hydroxybenzotriazole; these were easily introduced and also acted as good leaving groups during nucleophilic substitution by the amino group of the racemic β‐adrenolytics. The CDRs were characterized by UV, IR, 1H‐NMR, HRMS and CHNS. Separation of diastereomers was achieved by RP HPLC and open column chromatography. Absolute configuration of the diastereomers was established with the help of 1HNMR supported by developing their optimized lowest energy structures using Gaussian 09 Rev. A.02 program and hybrid density functional B3LYP with 6‐31G* basis set (based on density functional theory), and elution order was established. RP HPLC conditions for separation were optimized and the separation method was validated. The limit of detection values were 0.308 and 0.302 ng mL?1. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Enantiomeric separation of d ‐ and l ‐serine on an octadecylsilica column was investigated using (2R)‐2,5‐dioxopyrrolidin‐1‐yl‐2,5,7,8‐tetramethyl‐6‐(tetrahydro‐2H‐pyran‐2‐yloxy)chroman‐2‐carboxylate (R‐NPCA), which was developed for a pre‐column derivatization reagent for electrochemical detection. In addition, (2S)‐2,5‐dioxopyrrolidin‐1‐yl‐2,5,7,8‐tetramethyl‐6‐(tetrahydro‐2H‐pyran‐2‐yloxy)chroman‐2‐carboxylate (S‐NPCA) was newly synthesized from (S)‐(?)‐6‐hydroxy‐2,5,7,8‐tetramethylchroman‐2‐carboxylic acid (Sα‐CA), and the enantiomeric separation of d ‐ and l ‐serine using S‐NPCA was also examined. The enantiomeric separation of d ,l ‐serine was achieved using the R‐ or S‐NPCA as a chiral derivatization reagent, and the elution orders of the enantiomers were reversed between R‐ and S‐NPCA. The elution orders of d ‐ and l ‐serine unexpectedly reversed between the phosphate buffer at pH 4.0 and pH 2.2, both of which were used in the mobile phase. Separation factors obtained using R‐ and S‐NPCA were similar—1.09 and 1.07, respectively. The detection limit was approximately 940 fmol on the column (signal‐to‐noise ratio 3) when the applied voltage was +650 mV. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive and reliable ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method was developed and validated for simultaneous determination of l ‐tetrahydropalmatine (l ‐THP) and its active metabolites l ‐isocorypalmine (l ‐ICP) and L ‐corydalmine (l ‐CD) in rat plasma. The analytes were extracted by liquid–liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm; 2.7 μm; Agela) using acetonitrile–formic acid aqueous as mobile phase at a flow rate of 0.2 mL/min in gradient mode. The method was validated over the concentration range of 4.00–2500 ng/mL for l ‐THP, 0.400–250 ng/mL for l ‐ICP and 1.00–625 ng/mL for l ‐CD. Intra‐ and inter‐day accuracy and precision were within the acceptable limits of <15% at all concentrations. Correlation coefficients (r ) for the calibration curves were >0.99 for all analytes. The quantitative method was successfully applied for simultaneous determination of l ‐THP and its active metabolites in a pharmacokinetic study after oral administration with l ‐THP at a dose of 15 mg/kg to rats.  相似文献   

14.
Selenomethionine (SeMet) is a widely used nutritional supplement that has potential benefit for people living in selenium‐deficient areas. Previous research has shown that selenium administered as SeMet undergoes significant enterohepatic recycling which may involve the gut microflora. In order to investigate this we have developed a simple method for the quantitation of l ‐SeMet in rat gut content suspensions prepared from jejunum, ileum, caecum and colon. After incubation of l ‐SeMet with gut content suspensions, samples were deproteinized with sulfosalicylic acid and derivatized with o‐phthaldialdehyde (OPA) and N‐acetyl‐l ‐cysteine (NAC). Mass spectrometry confirmed the formation of a 1:1:1 derivative of l ‐SeMet with OPA and NAC. Samples were analysed by reversed‐phase high‐performance liquid chromatography with fluorescence detection. The assay was linear in the concentration range 0.5–100 µg/mL (r2 = 0.9992) with a limit of detection of 0.025 µg/mL (signal‐to‐noise ratio of 5). Intra‐day and inter‐day accuracies were 91.1–92.8 and 91.7–95.5%, respectively with corresponding precisions as relative standard deviation of <5%. Incubation of l ‐SeMet with gut content suspensions from different parts of the rat intestine showed that l ‐SeMet metabolism occurs mainly in the caecum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The chromatographic retention mechanism describing relationship between retention factor and concentration of Cu2+(l ‐phenylalanine)2 using chiral ligand mobile phase was investigated and eight mandelic acid derivatives were enantioseparated by chiral ligand exchange chromatography. The relationship between retention factor and concentration of the Cu2+(l ‐phenylalanine)2 complex was proven to be in conformity with chromatographic retention mechanism in which chiral discrimination occurred both in mobile and stationary phase. Different copper(II) salts, chiral ligands, organic modifier, pH of aqueous phase, and conventional temperature on retention behavior were optimized. Eight racemates were successfully enantioseparated on a common reversed‐phase column with an optimized mobile phase composed of 6 mmol/L of l ‐phenylalanine or N,N‐dimethyl‐l ‐phenylalanine and 3 mmol/Lof copper(II) acetate or copper(II) sulfate aqueous solution and methanol.  相似文献   

16.
We report the synthesis of the novel half‐titanocene alkoxide complex bischloro‐η5‐cyclopentadienyl(bicyclo[2.2.1]‐hept‐5‐en‐2‐oxy) titanium (IV), [CpTiCl2(O‐NBE)]. This complex was employed for the synthesis of chiral poly(l ‐lactide‐b‐hexyl isocyanate) diblock copolymer bearing a norbornene end group with sequential addition of monomers. The poly(hexyl isocyanate) block is chiral due to the last l ‐lactide unit of the poly(l ‐lactide) block. This macromonomer was polymerized towards a chiral polymer brush structure with polynorbornene backbone and chiral poly(l ‐lactide‐b‐hexyl isocyanate) side chains using Grubbs first‐generation catalyst. The polymers were characterized using size exclusion chromatography (SEC), nuclear magnetic resonance (NMR), and circular dichroism (CD) spectroscopy and their thermal properties were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1102–1112  相似文献   

17.
We have developed and validated a high‐performance liquid chromatography method that uses monolithic silica disk‐packed spin columns and a monolithic silica column for the simultaneous determination of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, and NG,NG′‐dimethyl‐l ‐arginine in human plasma. For solid‐phase extraction, our method employs a centrifugal spin column packed with monolithic silica bonded to propyl benzenesulfonic acid as a cation exchanger. After pretreatment, the methylated arginines are converted to fluorescent derivatives with 4‐fluoro‐7‐nitro‐2,1,3‐benzoxadiazole, and then the derivatives are separated on a monolithic silica column. l ‐Arginine concentration was also determined in diluted samples. Standard calibration curves revealed that the assay was linear in the concentration range 0.2–1.0 μM for methylated arginines and 40–200 μM for l ‐arginine. Linear regression of the calibration curve yielded equations with correlation coefficients of 0.999 (r2). The sensitivity was satisfactory, with a limit of detection ranging from 3.75 to 9.0 fmol for all four compounds. The RSDs were 4.3–4.8% (intraday) and 3.0–6.8% (interday). When this method was applied to samples from six healthy donors, the detected concentrations of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, NG,NG′‐dimethyl‐l ‐arginine and l ‐arginine were 0.05 ± 0.01, 0.41 ± 0.07, 0.59 ± 0.11, and 83.8 ± 30.43 μM (n = 6), respectively.  相似文献   

18.
Amino acid ionic liquids (AAILs) with l ‐lysine (l ‐Lys) as anion were synthesized and applied as new chiral ligands in Zn(II) complexes for chiral ligand‐exchange CE. After effective optimization, baseline enantioseparation of seven pairs of dansylated amino acids was achieved with a buffer of 100.0 mM boric acid, 5.0 mM ammonium acetate, 3.0 mM ZnSO4, and 6.0 mM [C6mim][l ‐Lys] at pH 8.2. To validate the unique behavior of AAILs, a comparative study between the performance of Zn(II)‐l ‐Lys and Zn(II)‐[C6mim][l ‐Lys] systems was conducted. In Zn(II)‐[C6mim][l ‐Lys] system, it has been found that the improved chiral resolution could be obtained and the migration times of the three test samples were markedly prolonged. Then the separation mechanism was further discussed. The role of [C6mim][l ‐Lys] indicated clearly that the synthesized AAILs could be used as chiral ligands and would have potential utilization in separation science in future.  相似文献   

19.
The crystal structure of l ‐methionyl‐l ‐alanine, C8H16N2O3S, is very similar to that of l ‐valyl‐l ‐alanine [Görbitz & Gundersen (1996). Acta Cryst. C 52 , 1764–1767] and other related dipeptides in space group P61, but there are seven mol­ecules in the asymmetric unit. The Z value of 42 is the highest ever observed for a chiral mol­ecule.  相似文献   

20.
The concentrations of l ‐tryptophan (Trp) and the metabolite l ‐kynurenine (KYN) can be used to evaluate the in‐vivo activity of indoleamine 2,3‐dioxygenase (IDO) and tryptophan 2,3‐dioxygenase (TDO). As such, a novel method involving derivatization of l ‐Trp and l ‐KYN with (R)‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS) and separation by high‐performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection on a triazole‐bonded column (Cosmosil HILIC®) was developed to determine their concentrations. The optimized mobile phase, CH3CN/10 mm ammonium formate in H2O (pH 5.0) (90:10, v/v) eluted isocratically, resulted in satisfactory separation and MS/MS detection of the analytes. The detection limits of l ‐Trp and l ‐KYN were approximately 50 and 4.0 pm , respectively. The column temperature affected the retention behaviour of the Trp and KYN derivatives, with increased column temperatures leading to increased capacity factors; positive enthalpy changes were revealed by van't Hoff plot analyses. Using the proposed LC‐MS/MS method, l ‐Trp and l ‐KYN were successfully determined in 10 μL human serum using 1‐methyl‐l ‐Trp as an internal standard. The precision and recovery of l ‐Trp were in the ranges 2.85–9.29 and 95.8–113%, respectively, while those of l ‐KYN were 2.51–16.0 and 80.8–98.2%, respectively. The proposed LC‐MS/MS method will be useful for evaluating the in vivo activity of IDO or TDO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号