首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electrophoresis》2018,39(14):1786-1793
Adding external pressure during the process of capillary electrophoresis usually add to the band broadening, especially if the pressure induced flow is significant. The resolution is normally negatively affected in pressure‐assisted capillary electrophoresis (PACE). Frontal analysis (FA), however, can potentially benefit from using an external pressure while avoiding the drawbacks in other modes of CE. In this work, possible impact from the external pressure was simulated by COMSOL Multiphysics®. Under a typical CE‐FA set‐up, it was found that the detected concentrations of analyte will not be significantly affected by an external pressure less than 5 psi. Besides, the measured ligand concentration in PACE‐FA was also not affected by common variables (molecular diffusion coefficient (10−8 to 10−11 m2/s), capillary length etc). To provide an experimental proof, PACE‐FA is used to study the binding interactions between hydroxypropyl β‐cyclodextrin (HP‐β‐CD) and small ligand molecules. Taking the HP‐β‐CD /benzoate pair as an example, the binding constants determined by CE‐FA (18.3 ± 0.8 M−1) and PACE‐FA (16.5 ± 0.5 M−1) are found to be similar. Based on the experimental results, it is concluded that PACE‐FA can reduce the time of binding analysis while maintaining the accuracy of the measurements.  相似文献   

2.
The interaction between human serum albumin (HSA) and the acetylcholinesterase inhibitor donepezil, has been studied by means of capillary electrophoresis frontal analysis (CE/FA) and circular dichroism. CE/FA enabled rapid and direct estimation of the quantity of free donepezil present at equilibrium with a physiological level of serum albumin (600 mol L–1). Application of Scatchard analysis enabled estimation of the binding parameters of HSA towards donepezil, such as association constant and number of binding sites on one protein molecule. Furthermore, due to enantioseparation ability shown by HSA on donepezil in CE mode, displacement experiments were carried out using ketoprofen and warfarin as coadditives to the HSA based running buffer. The addition of these compounds reduced the enantioresolution of donepezil by HSA only when used at high concentration. These data were confirmed and corroborated by circular dichroism (CD) experiments. Using CD, bilirubin was also applied as a ligand specific to site III of HSA. The observed behaviour suggested that donepezil could be considered a ligand with independent binding to sites I and II; although site III is not the highest affinity site, indirect interaction (i.e. cooperative binding) can be assumed.  相似文献   

3.
Our previous experimental results have shown that ergosta‐4,6,8(14),22‐tetraen‐3‐one (ergone) is one of the main bioactive components of Polyporus umbellatus. The efficacy of ergone binding to human serum albumin (HSA) is critical for pharmacokinetic behavior of ergone. The interactions between ergone and HSA under simulative physiological conditions were investigated by the methods of fluorescence spectroscopy, absorption and circular dichroism spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by ergone was the result of the formation of the ergone‐HSA complex. According to the modified Stern‐Volmer equation, the binding constants (Ka) between ergone and HSA were determined. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be 0.989 kJ mol‐1 and 11.214 J mol‐1 K‐1, indicating that the hydrogen bonds and hydrophobic interactions played a dominant role in the binding of ergone to HSA. The conformational investigation showed that the presence of ergone decreased the α‐helical content of HSA and induced the slight unfolding of the polypeptides of protein. Furthermore, displacement experiments using warfarin and ibuprofen indicated that ergone could bind to site I of HSA, which was also in agreement with the results of the molecular modeling.  相似文献   

4.
The present paper deals with the enantiomeric separation of nuarimol enantiomers by affinity EKC-partial filling technique using HSA as chiral selector. Firstly, a study of nuarimol interactions with HSA by CE-frontal analysis was performed. The binding parameters obtained for the first site of interaction were n(1) = 0.84; K(1) = 9.7 +/- 0.3x10(3 )M(-1) and the protein binding percentage of nuarimol at physiological concentration of HSA was 75.2 +/- 0.2%. Due to the moderate affinity of nuarimol towards HSA the possibility of using this protein as chiral selector for the separation of nuarimol using the partial filling technique was evaluated. A multivariate optimization approach of the most critical experimental variables in enantioresolution, running pH, HSA concentration and plug length was carried out. Separation of nuarimol enantiomers was obtained under the following selected conditions: electrophoretic buffer composed of 50 mM Tris at pH 7.3; 160 muM HSA solution applied at 50 mbar for 156 s as chiral selector; nuarimol solutions in the range of 2-8x10(-4) M injected hydrodynamically at 30 mbar for 2 s and the electrophoretic runs performed at 30 degrees C applying 15 kV voltage. Resolution, accuracy, reproducibility speed and cost of the proposed method make it suitable for quality control of the enantiomeric composition of nuarimol in formulations and for further toxicological studies. The results showed a different affinity between nuarimol enantiomers towards HSA.  相似文献   

5.
A copper(II) complex containing the ceftobiprole drug and 1,10-phenanthroline (phen) has been synthesized and characterized by UV–vis, FT-IR and mass spectra, and elemental analysis. The binding interaction between [Cu(cef)(phen)Cl2] complex and human serum albumin (HSA) was investigated using absorption, fluorescence emission and circular dichroism spectroscopies, and molecular docking. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that the hydrogen bond and van der Waals interactions played main roles in the binding of complex [Cu(cef)(phen)Cl2] to HSA. The results of CD and UV–vis spectroscopy showed that the binding of [Cu(cef)(phen)Cl2] to HSA induces some conformational changes in HSA. Displacement experiments predicted that the binding of [Cu(cef)(phen)Cl2] complex to HSA is located within domain III, Sudlow’s site 2, and these observations were substantiated by molecular docking studies.  相似文献   

6.
补骨脂素和异补骨脂素键合人血清白蛋白的比较   总被引:1,自引:0,他引:1  
将互为同分异构体的两种植物药活性组分补骨脂素和异补骨脂素作为研究对象,利用荧光光谱、紫外光谱、圆二色谱及傅立叶变换红外光谱详细比较研究了这两种香豆素类化合物与人血清白蛋白(HSA)的键合作用.不同光谱的结果定性、定量地显示了HSA二级结构变化的程度.依据荧光滴定实验及Van′t Hoff公式求出了反应的热力学参数(ΔH和ΔS)的值.根据修正后的Stern-Volmer和Scatchard方程和荧光光谱数据分别求得不同温度(296,303,310及318 K)下药物与蛋白相互作用的结合常数及结合位点数;且根据F觟rster偶极-偶极能量转移理论,求得药物与HSA间的键合距离;利用竞争实验确定了药物在HSA上的键合位点为site II.从分子水平上揭示了这两种化合物与HSA相互作用的机制.  相似文献   

7.
The interaction between juglone at the concentration range of 10–110 µM and bovine serum albumin (BSA) or human serum albumin (HSA) at the constant concentration of 11 µM was investigated by fluorescence and UV absorption spectroscopy under physiological-like condition. Performing the experiments at different temperatures showed that the fluorescence intensity of BSA/HSA was decreased in the presence of juglone by a static quenching mechanism due to the formation of the juglone–protein complex. The binding constant for the interaction was in the order of 103 M?1, and the number of binding sites for juglone on serum albumins was determined to be equal to one. The thermodynamic parameters including enthalpy (ΔH), entropy (ΔS) and Gibb’s free energy (ΔG) changes were obtained by using the van’t Hoff equation. These results indicated that van der Waals force and hydrogen bonding were the main intermolecular forces stabilizing the complex in a spontaneous association reaction. Moreover, the interaction of BSA/HSA with juglone was verified by UV absorption spectra and molecular docking. The results of synchronous fluorescence, UV–visible and CD spectra demonstrated that the binding of juglone with BSA/HSA induces minimum conformational changes in the structure of albumins. The increased binding affinity of juglone to albumin observed in the presence of site markers (digoxin and ibuprofen) excludes IIA and IIIA sites as the binding site of juglone. This is partially in agreement with the results of molecular docking studies which suggests sub-domain IA of albumin as the binding site.  相似文献   

8.
Wang J  Ndou TT  Warner IM  Pau CP 《Talanta》1993,40(4):557-563
Three large fragments (A, B and C) of human serum albumin (HSA) were produced by cyanogen bromide digestion of HSA in order to investigate the specific binding sites. The fragments were isolated by use of gel filtration, followed by high performance ion exchange chromatography. The isolated fragments were examined by use of UV/Vis, steady-state fluorescence, and circular dichroism spectroscopy. The study was extended to examine the interactions of bilirubin and two anionic drugs, warfarin and naproxen, with HSA and the three fragments. The primary bilirubin binding site on HSA molecule appeared to be located between fragment A and fragment C. The results also suggest the binding sites of the two anionic drugs to mosy likely be located in fragment C of HSA molecule.  相似文献   

9.
赵富荣  郭明  邵东伟  夏琪涵 《色谱》2020,38(8):975-983
利用毛细管电泳(CE)技术在体外条件下建立了苦参碱(MT)与血清白蛋白(SA)相互作用的分析方法。生理条件下通过淌度移动法和前沿分析法(FA)研究苦参碱与血清白蛋白的结合状况,构建配体(MT)-受体(SA)相互作用模型。其中,淌度移动法采用非线性拟合方法获得苦参碱与人血清白蛋白(HSA)结合参数;FA运用非线性回归方程、Scatchard方程、Klotz方程3种方程获得苦参碱与人血清白蛋白结合参数,分析其相互作用状况进而分析模型适用度。利用淌度移动法可知,人血清白蛋白与苦参碱表观结合常数KB为8.072×103 mol/L;利用FA法可知,采用非线性回归方程、Scatchard方程、Klotz方程3种方程获得苦参碱与人血清白蛋白表观结合常数KB分别为1.434×103、1.781×103和2.133×103 mol/L,且二者结合位点数在1.0左右,说明苦参碱与人血清白蛋白作用只有单一类型的结合位点。通过计算分析得到3个方程的相关系数(r),关系为rKlotz > r非线性 > rScatchard。结果表明:淌度移动法和FA法均适用于分析MT-HSA体系的结合状况;由于FA法可以计算出表观结合常数的同时又能计算出结合位点数,因而更适合MT-HSA体系的分析研究;分析比较得出3种方程之中Klotz方程为最适理论模型。结合参数表明,MT-HSA相互作用体系之间发生的结合反应为单一类型的结合位点且结合稳定。相关工作阐明了典型生物碱与血清白蛋白的相互作用机制,可为生物碱的血液输运机制的深入研究提供有益参考。  相似文献   

10.
A combination of fluorescence, UV–Vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic and molecular modeling approaches was employed to investigate the interaction between toddalolactone (TDT) and human serum albumin (HSA) at physiological buffer conditions (pH 7.4). Fluorescence titration suggests that the mechanism of the fluorescence quenching of HSA is static, resulting from the formation of a TDT–HSA complex. Binding parameters calculated from the modified Stern–Volmer equation show that TDT binds to HSA with high affinity. Negative enthalpy change and positive entropy change values suggest that the binding process is primarily driven by hydrophobic interactions and hydrogen bonds. The binding of TDT to HSA results in an increase in the surface hydrophobicity of HSA. The binding distance between the Trp-214 residue (donor) and TDT (acceptor) was determined to be 4.18 nm based on the Förster theory of non-radioactive energy transfer. Displacement studies of site markers reveal that the binding site of TDT to HSA is located in the subdomain IIA (Sudlow’s site I). Furthermore, the molecular docking results corroborate and illustrate the specific binding mode and binding site. Analysis of UV–Vis absorption, CD and FT-IR spectra demonstrated that TDT induced a small alteration of the protein’s conformation.  相似文献   

11.
A very recent epidemiological study provided strong support for nobiletin (NOB) as a potential candidate chemopreventive agent against cancer. From the pharmacology point of view, drug–protein interactions are determining factors in therapeutic, pharmacodynamic and toxicological drug properties. In this work, for the first time, detection of NOB at near‐physiological conditions was accomplished by means of capillary electrophoresis–frontal analysis (CE‐FA), and then the binding constants of NOB with bovine serum albumin (BSA) at the same conditions were determined. Complexation of NOB–BSA led to a decrease of the height for free NOB with increasing concentration of BSA. These results revealed the presence of a single class of binding site on BSA, and provided the binding constant of 103/m , showing the strong affinity of NOB for BSA. Furthermore, circular dichroism spectra showed that, when the molar ratio of NOB to BSA was up to 2:1, NOB did not affect the overall protein conformation significantly and the protein thus retained a native‐like structure. These results may provide important information for preclinical studies of nobiletin in pharmaceutical research. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Sun  Hanwen  He  Pan 《Chromatographia》2008,68(11):969-975

The binding of fluoroquinolones to the transport protein, human serum albumin (HSA), under simulated physiological conditions has been studied by capillary electrophoresis–frontal analysis (CE–FA). The binding of these drugs to human plasma was evaluated by using ultrafiltration and capillary electrophoresis. The free drug concentration [D]f at each HSA concentration was determined by the plateau height in the electropherograms and the calibration lines. The binding constants of fluoroquinolones and HSA were estimated using nonlinear regression with origin 7.5 software. The fluoroquinolones were found to show low affinity toward HSA, with binding constants ranging from 1.73 × 102 to 5.40 × 102 M−1. The percentages of protein binding (PB) for fluoroquinolones to HSA were between 8.6 and 22.2%, while the PB percentages for fluoroquinolones to human plasma were between 10.2 and 33.1%. It can be found that the PB percentages for fluoroquinolones to HSA are mostly lower than those for fluoroquinolones to human plasma. It suggests that HSA is the primary protein responsible for the binding of fluoroquinolones in human plasma. The thermodynamic parameters were obtained by CE–FA. The positive ∆H and ∆S values obtained by CE–FA showed that the binding reaction was an endothermic process, and the entropy drive the binding and hydrophobic interaction played major roles in the binding of fluoroquinolones to HSA.

  相似文献   

13.
Hanwen Sun  Pan He 《Chromatographia》2008,68(11-12):969-975
The binding of fluoroquinolones to the transport protein, human serum albumin (HSA), under simulated physiological conditions has been studied by capillary electrophoresis–frontal analysis (CE–FA). The binding of these drugs to human plasma was evaluated by using ultrafiltration and capillary electrophoresis. The free drug concentration [D]f at each HSA concentration was determined by the plateau height in the electropherograms and the calibration lines. The binding constants of fluoroquinolones and HSA were estimated using nonlinear regression with origin 7.5 software. The fluoroquinolones were found to show low affinity toward HSA, with binding constants ranging from 1.73 × 102 to 5.40 × 102 M?1. The percentages of protein binding (PB) for fluoroquinolones to HSA were between 8.6 and 22.2%, while the PB percentages for fluoroquinolones to human plasma were between 10.2 and 33.1%. It can be found that the PB percentages for fluoroquinolones to HSA are mostly lower than those for fluoroquinolones to human plasma. It suggests that HSA is the primary protein responsible for the binding of fluoroquinolones in human plasma. The thermodynamic parameters were obtained by CE–FA. The positive ?H and ?S values obtained by CE–FA showed that the binding reaction was an endothermic process, and the entropy drive the binding and hydrophobic interaction played major roles in the binding of fluoroquinolones to HSA.  相似文献   

14.
A new water-soluble Cu(II) complex containing ranitidine drug and 1,10-phenanthroline was synthesized and characterized by elemental analysis, molar conductivity, spectroscopic and computational methods. In vitro human serum albumin (HSA)-interaction studies of Cu(II) complex were performed by employing fluorescence spectroscopy in combination with UV–vis absorption and circular dichroism (CD) spectroscopies. The results of fluorescence titration showed that Cu(II) complex strongly quenched the intrinsic fluorescence of HSA through a static quenching mechanism with an intrinsic binding constant (6.05 × 104 M?1) at 286 K. The thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated and suggested that the hydrophobic and hydrogen bonding interactions play major roles in Cu(II) complex-HSA association. The displacement experiments using warfarin and ibuprofen as site I and II probes proved that the Cu(II) complex could bind to site I (subdomain IIA) of HSA. Finally, CD spectra indicated that the interaction of the Cu(II) complex with HSA leads to an increase in the α-helical content. The main result of this study was the finding that the binding affinity of the Cu(II) complex to HSA is three orders of magnitude stronger than that of ranitidine drug.  相似文献   

15.
《Electrophoresis》2017,38(9-10):1366-1373
Baseline separation of omeprazole (OME) enantiomers was achieved by affinity capillary electrophoresis (ACE), using human serum albumin (HSA) as the chiral selector. The influence of several experimental variables such as HSA concentration, the type and content of organic modifiers, applied voltage and running buffer concentration on the separation was evaluated. The binding of esomeprazole (S‐omeprazole, S‐OME) and its R‐enantiomer (R‐omeprazole, R‐OME) to HSA under simulated physiological conditions was studied by ACE and fluorescence spectroscopy which was considered as a reference method. ACE studies demonstrated that the binding constants of the two enantiomers and HSA were 3.18 × 103 M−1 and 5.36 × 103 M−1, respectively. The binding properties including the fluorescence quenching mechanisms, binding constants, binding sites and the number of binding sites were obtained by fluorescence spectroscopy. Though the ACE method could not get enough data when compared with the fluorescence spectrum method, the separation and binding studies of chiral drugs could be achieved simultaneously via this method. This study is of great significance for the investigation and clinical application of chiral drugs.  相似文献   

16.
The interaction of oleanolic acid (OA) and its glycosylated derivatives (LL-2 and LL-4) with human and bovine serum albumins were investigated using the methods of fluorescence spectroscopy. The spectroscopic analysis of the fluorescence quenching that occurs when OA and its derivatives interact with serum albumin indicates that these quenching constants are inversely correlated with temperature and the quenching process involves static interactions. The binding affinity of OA and OA-derived compounds to bovine serum albumin (BSA) and human serum albumin (HSA) follow the trend LL-4 > LL-2 > OA, suggesting that glycosylation of OA can facilitate its binding to serum albumins. Additionally, the binding affinity of these compounds to HSA is stronger than it is to BSA. The calculated thermodynamic parameters suggest that hydrophobic interactions dominate these interaction processes. We also found that only a single type of binding site exists for OA and its derivatives to HSA and BSA. Synchronous fluorescence results indicate that the binding of OA, LL-2 and LL-4 to BSA and HSA can lead to the conformational changes around the tryptophan residues of the two serum albumins. These results provided valuable clues to the pharmacokinetics and the pharmacologic activities of OA and its types of triterpenoid saponins derivatives.  相似文献   

17.
Here, the interaction of single-walled carbon nanotubes (SWCNTs) and human serum albumin (HSA) as one of the most important proteins for carrying and binding of drugs was investigated and the impact of radius to volume ratio and chirality of the SWCNTs was evaluated using molecular docking method. Molecular docking results represented that zigzag SWCNT with radius to volume ratio equal to 6.77 × 10?3 Å?2 has the most negative binding energy (?17.16 kcal mol?1) and binds to the HSA cleft by four π–cation interactions. To study the changes of HSA structure, the complex of HSA–SWCNT was subjected to 30 ns molecular dynamics simulation. The MD results showed that HSA was compressed about 2% after interaction with SWCNT. The equilibrated structure of HSA–SWCNT complex was used to compare the binding of warfarin to HSA in the absence and presence of SWCNT. The obtained results represent that warfarin-binding site was changed in the presence of SWCNT and its binding energy was increased. Really, warfarin was bound on the surface of SWCNT instead of its binding site on HSA. It means that HSA function as a carrier for warfarin is altered, the free concentration of warfarin is changed, and its release is decreased in the presence of SWCNT.  相似文献   

18.
Binding of the anticancer drug mitoxantrone with the protein human serum albumin (HSA) has been studied by using isothermal titration calorimetry (ITC), in combination with fluorescence, UV–visible, and circular dichroism spectroscopy. The thermodynamic parameters of binding have been evaluated from ITC and spectroscopic results and compared. The ITC results demonstrate that the binding of mitoxantrone with HSA occurs according to two sets of binding sites on the protein as opposed to the fluorescence and UV–visible spectroscopic results. Blockage of one binding site on HSA for mitoxantrone in the presence of NaCl indicates strong involvement of electrostatic interactions in the binding of the drug with the protein. An insignificant temperature dependence of the association constant observed in fluorescence measurements suggests a very low enthalpy of binding which is in close agreement with the results obtained from ITC measurements. Fluorescence life time measurements suggest formation of a static complex between mitoxantrone and HSA. The discrepancies in the ITC and fluorescence results suggest that one of the binding sites on the protein for mitoxantrone does not contain tryptophan residue in its immediate vicinity. The calorimetric and spectroscopic results have provided quantitative information on the binding of mitoxantrone with HSA and suggest that the binding is dominated by electrostatic interactions.  相似文献   

19.
李林尉  王冬冬  孙德志  刘敏  曲秀葵 《化学学报》2007,65(24):2853-2857
在298.15 K下,根据本结合过程的假设和Langmuir结合理论, 用等温滴定微量热和圆二色谱分析法研究了抗肿瘤药物5-氟尿嘧啶(5-FU)与人血清白蛋白(HSA)的相互作用. 研究结果表明, 蛋白质(HSA)与药物配体5-氟尿嘧啶的相互作用存在两类结合位点. 第一类结合, 结合位点数N=71±0.1, 结合常数 K=(1.46±0.016)×105 L•mol-1, 结合焓ΔH=(39.61±0.220) kJ•mol-1, 结合熵ΔS=(231.68±0.025) J•mol-1•K-1, 结合自由能ΔG=(-29.48±0.030) kJ•mol-1. 结合过程为熵驱动过程, 疏水相互作用是过程的主要推动力;第二类结合, 结合位点数N=140±0.2, 结合常数 K=(1.49±0.032)×105 L•mol-1, 结合焓ΔH=(-19.31±0.103) kJ•mol-1, 结合熵ΔS=(34.30±0.055) J•mol-1•K-1, 结合自由能ΔG=(-29.53±0.041) kJ•mol-1, 结合过程为焓-熵协同驱动过程, 氢键和静电相互作用是过程的主要推动力. 圆二色谱分析结果表明, 在两类结合过程中, 药物5-氟尿嘧啶(5-FU)的作用致使蛋白质(HSA)二级结构单元的相对含量发生了变化.  相似文献   

20.
在模拟人体生理条件下,综合利用荧光光谱、紫外吸收光谱、圆二色谱和分子模拟等方法,研究了吡虫啉(IMI)和人血清白蛋白(HSA)相互作用的热力学行为。荧光光谱和紫外吸收光谱的分析表明:吡虫啉能有效猝灭HSA的内源荧光,猝灭机制为静态猝灭;通过所获取的相互作用热力学参数,可知两者之间的相互作用是一个吉布斯自由能降低的自发过程,且二者之间的主要作用力为氢键和范德华力。位点竞争实验和分子模拟的结果表明:吡虫啉在HSA的主要结合位置为位点?。圆二色谱、同步荧光光谱和三维荧光的分析发现:吡虫啉引起HSA的构象发生改变,其α-螺旋含量降低,无规卷曲含量升高,肽链结构在吡虫啉的作用下有所伸展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号