首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
A novel and automated, stability-indicating, reversed phase ultra performance liquid chromatography (UPLC) method was developed and validated for the quantitative determination of erdosteine, its known impurities and two novel degradation products in a new pharmaceutical dosage form (effervescent tablets). The chromatographic separations were performed on a Waters Acquity UPLC HSS T3, 1.8 µm (2.1 mm?×?150 mm, I.D.) stainless steel column. The mobile phase consisted of 0.1% TFA in water and methanol under gradient elution conditions, at a flow rate of 0.29 mL/min, for the assay and impurities analysis. UV detection was set at a wavelength of 238 nm. Erdosteine raw material, placebo and effervescent tablets were subjected to forced degradation. The new degradation products (labeled OX1 and OX2) were found after oxidative treatment and characterized by ultra performance liquid chromatography mass spectrometry. The validation parameters such as linearity, limit of detection (LOD) and quantification (LOQ), accuracy, precision, specificity and robustness were highly satisfactory for all analyzed compounds. LOD (0.020 and 0.011–0.385 µg/mL for erdosteine and impurities, respectively) and LOQ values show the high sensibility of the method. Specificity of the method was confirmed by testing the matrix components. The validated method demonstrated to be suitable for routine quality control purposes and for routine stability studies of erdosteine in effervescent formulations.  相似文献   

2.
Leaves of Stevia rebaudiana contain glycosides with sweetness and biological activity. However besides the major glycosides, there are other glycosides within extracts that may contribute to its activity, and therefore it is important to quantify them. In this work, an isocratic HPLC method was validated for determination of dulcoside A, steviolbioside, rebaudioside C and rebaudioside B. An HPLC method was performed using a C18 column (250 × 4.6 mm, particle size 5 µm) and a UV detector set at 210 nm. The mobile phase consisted of a 32:68 (v/v) mixture of acetonitrile and sodium phosphate buffer (10 mmol/L, pH 2.6), set to a flow rate of 1.0 mL/min. The calculated parameters were: sensitivity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy and precision. The calibration curves were linear over the working range 25–150 µg/mL, with coefficient of correlation of ≥0.99 and coefficient of determination of ≥0.98. The LOD was 5.68–8.81 µg/mL, while the LOQ was 17.21–26.69 µg/mL. The percentage recoveries of fortified samples were 100 ± 10% and precision, relative standard deviation, was <10%. The method validation showed accuracy, linearity and precision; therefore this method can be applied for quantitative analysis of minor steviol glycosides in S. rebaudiana leaves. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This paper reports the use of a new LC method with a fused‐core analytical column coupled to ESI‐MS to determine residues of the biopesticide spinosad in bee pollen and beeswax. The method analyzes the active ingredients, spinosyns A and D, with a simple and efficient sample treatment (recovery between 90 and 105%) consisting of a solid–liquid extraction with acetone (bee pollen) or acetonitrile (beeswax). The method was validated in terms of selectivity, LOD, LOQ, linearity, and precision. The LOD and LOQ values ranged between 0.1–0.2 and 0.4–0.7 μg/kg, respectively. Moreover, the precision obtained within the linear concentration range (LOQ 500 μg/kg) was satisfactory (RSD lower than 5%). Finally, the proposed method was applied to analyze bee pollen and beeswax samples collected from apiaries located close to fruit orchards in two Spanish regions.  相似文献   

4.
Compound 2β-carbomethoxy-3β-(4-chlorophenyl)tropane (β-CCT) is a key intermediate for the synthesis of some clinical dopamine transporter (DAT) imaging agents. Potential impurities from synthesis process of β-CCT and degradation during storage might have detrimental effect on the final imaging agents. Thus, it is necessary to guarantee the quality of β-CCT. In this study, a rapid, sensitive and accurate high-performance liquid chromatography (HPLC) method was developed and validated for the analysis of β-CCT and its related substances. The chromatographic separation was achieved on a reverse-phase phenomenex? Gemini C18 column with an isocratic mobile phase consisted of methanol, water and TFA (30:70:0.1 v/v/v). The flow rate was 1.0 mL/min at 30 °C and samples were monitored at 220 nm. The method was validated concerning system suitability, linearity, accuracy, precision, specificity, robustness and stability. The limit of detection (LOD) and the limit of quantification (LOQ) of β-CCT were 0.5 and 1.5 μg/mL, respectively. The linearity range of β-CCT was 1.5–450 μg/mL with a good linear correlation coefficient (R2 = 0.9999) between the peak response and concentration. Specificity investigation through forced degradation experiments displayed that β-CCT was stable in acidic, thermal and photolytic degradation conditions, but significantly unstable in alkaline and oxidative conditions. With the developed chromatographic method, possible impurity α-CCT from synthetic process and potential degradation products could be well separated from β-CCT. Good recovery and precision were manifested in the assay method. These results indicated that the present method would be suitable for not only the quality assurance of β-CCT in regular production sample assays but also the monitoring and determination of its related substances.  相似文献   

5.
A column high-performance liquid chromatography (HPLC) method was developed for the determination of glucosamine in dosage forms. Glucosamine was derivatized by addition of a solution containing orthophthaldialdehyde. The HPLC separation was achieved on a Spherimage 80 ODS2 column (250 x 4 mm id, 5 microm particle size) using an isocratic mobile phase containing phosphate buffer-methanol (90 + 10, v/v, pH 6.50) and methanol-tetrahydrofuran (97 + 3, v/v) in proportions of 85 + 15 at a flow rate of 1 mL/min, followed by fluorescence detection. The method was validated for specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The detector response for glucosamine HCI was linear over the concentration range of 0.1-20 microg/mL with a correlation coefficient of 0.9980. The accuracy was between 99.4 and 100.8%. The LOD and the LOQ were 0.009 and 0.027 microg/mL, respectively. The method was applied to determination of glucosamine in solid dosage forms.  相似文献   

6.
Rapid and simple HPLC‐UV and LC‐MS methods were developed and validated for the quantification of ertapenem (Invanz?) in human plasma. Ertapenem is a unique drug in that current dosing recommendations call for a 1 g dose for normal renal function patients, despite body weight. These assays, which involve a protein precipitation followed by liquid–liquid extraction, allow for fast therapeutic drug monitoring of ertapenem in patients, which is especially useful in special populations. Both methods were sufficient to baseline resolve meropenem (internal standard) and ertapenem, and were validated over 3 days using a six‐point calibration curve (0.5–50 µg/mL). Validation was collected using four different points on the calibrations curve yielding acceptable precision (<15% inter‐day and intra‐day; <20% for lower limit of quantitation, LLOQ) as well as accuracy (<15% inter‐day and intra‐day; <20% for LLOQ). The lower limit of detection (LOD) was determined to be 0.1 and 0.05 µg/mL for the HPLC‐UV and LC‐MS methods, respectively. The developed HPLC‐UV and LC‐MS methods for ertapenem quantification are fast, accurate and reproducible over the calibration range and can be used to determine ertapenem plasma concentrations for monitoring clinical efficacy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Evidence‐based herbal products with assured quality are assuming importance for complementary and alternative medicine. Traditional medicines by and large are not standardized and validated to meet the new requirements. In the present study, marker (embelin)‐based standardization of a major medicinal plant, Embelia ribes and its polyherbal formulations was attempted. Conditions for the quantitative extraction of the marker compound embelin from E. ribes fruits and herbal formulations were also optimized. Reversed‐phase high‐performance liquid chromatography, coupled with diode array detection (RP‐HPLC–DAD) for the quantification of embelin was developed and validated. Satisfactory results were obtained with respect to linearity (15–250 µg/mL), LOD (3.97 µg/mL), LOQ (13.2 µg/mL), recovery (99.4–103.8%) and precision (1.43–2.87%). The applicability of the method was demonstrated with selected phytopharmaceuticals. The present method was sensitive, accurate, simple and reproducible and therefore can be recommended for marker‐based standardization, and quality assurance of E. ribes herbal formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
《Analytical letters》2012,45(12):1855-1867
Abstract

A simple stability-indicating high-performance liquid-chromatographic (HPLC) method for the assay of erlotinib in the presence of its degradation products was developed on a C18 column using a mobile phase of 0.01 M ammonium formate–acetonitrile–containing formic acid with a flow rate of 1.0 mL min?1. The method was validated. Selectivity was validated by subjecting the stock solution of erlotinib to acidic, basic, photolysis, oxidative, and thermal degradation. The linearity range and values for limits of detection (LOD) and quantification (LOQ) were found to be 1–198, 0.33, and 1.1 µg mL?1, respectively. The analysis of the tablets containing erlotinib was quite precise (relative standard deviation <1%).  相似文献   

9.
A rapid validated ultra-fast liquid chromatography–photodiode array detector (UFLC-PDA) method was developed to identify and quantify ayapanin (AY) and umbelliferone (UM) simultaneously in Ayapana triplinervis Vahl methanolic extract. The method was validated for linearity, limit of detection (LOD; 3:1σ/S), limit of quantification (LOQ; 10:1σ/S), precision, accuracy, specificity and robustness. The response was linear with a good correlation between concentration and mean peak area through a correlation coefficient of 0.9996, y = 7025.7x – 2269.8 and 0.9997, y = y = 16,262x – 946 with LOD of 6.256 ± 0.52 and 3.325 ± 0.36, and LOQ of 18.838 ± 0.18 and 8.870 ± 0.85 for AY (0.67% w/w) and UM (0.18% w/w), respectively. The relative standard deviation (%) of precision and recovery of AY and UM was <2.0%. The proposed method was simple, accurate, specific, precise and reproducible.  相似文献   

10.
A novel capillary zone electrophoresis separation coupled to electro spray ionization time‐of‐flight mass spectrometry method was developed for the simultaneous analysis of six toxic alkaloids: brucine, strychnine, atropine sulfate, anisodamine hydrobromide, scopolamine hydrobromide and anisodine hydrobromide in human plasma and urine. To obtain optimal sensitivity, a solid‐phase extraction method using Oasis MCX cartridges (1 mL, 30 mg; Waters, USA) for the pretreatment of samples was used. All compounds were separated by capillary zone electrophoresis at 25 kV within 12 min in an uncoated fused‐silica capillary of 75 μm id × 100 cm and were detected by time‐of‐flight mass spectrometry. This method was validated with regard to precision, accuracy, sensitivity, linear range, limit of detection (LOD), and limit of quantification (LOQ). In the plasma and urine samples, the linear calibration curves were obtained over the range of 0.50–100 ng/mL. The LOD and LOQ were 0.2–0.5 ng/mL and 0.5–1.0 ng/mL, respectively. The intra‐ and interday precision was better than 12% and 13%, respectively. Electrophoretic peaks could be identified by mass analysis.  相似文献   

11.
《Analytical letters》2012,45(3):569-578
Abstract

Applying capillary zone electrophoresis (CZE) to separate the components of Cephradine for Injection: cephradine, and L‐arginine, as well as cephalexin, which is the degradation product of cephradine was studied. The best results were achieved with background electrolyte consisting of 50 mM disodium hydrogen phosphate buffer at pH 6.5 and an applied voltage of 20 kV in a bare fused‐silica capillary. The samples were injected at 50 mbar for 4 s. The capillary temperature was 25°C and the UV detection was performed at a wavelength of 195 nm. Histidine was used as internal standard (IS) to ensure acceptable precision data. The linear ranges of cephradine, L‐arginine, and cephalexin were 93.8–6255.6 µg/mL, 47.9–3195.2 µg/mL, and 6.1–405.4 µg/mL, respectively. Quantitative parameters such as accuracy, precision, limit of detection (LOD), and limit of quantitation(LOQ) were all established in CZE mode.  相似文献   

12.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of piracetam in rat plasma was developed and validated over the concentration range of 0.1–20 µg/mL. After addition of oxiracetam as internal standard, a simplified protein precipitation with trichloroacetic acid (5%) was employed for the sample preparation. Chromatographic separation was performed by a Zorbax SB‐Aq column (150 × 2.1 mm, 3.5 µm). The mobile phase was acetonitrile–1% formic acid in water (10:90 v/v) delivered at a flow rate of 0.3 mL/min. The MS data acquisition was accomplished in multiple reaction monitoring mode with a positive electrospray ionization interface. The lower limit of quantification was 0.1 µg/mL. For inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 9%, and the accuracy was within the 94.6–103.2% range. The developed method was successfully applied to pharmacokinetic studies of piracetam in rats following single oral administration dose of 50 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A gas chromatographic (GC) method with a rapid and simple sample preparation was developed and validated for determination of prilocaine in human plasma. The validation parameters of linearity, precision, accuracy, recovery, specificity, limit of detection and limit of quantification were studied. The range of quantification for the GC method was 50–300 ng mL?1 in plasma. Intra- and inter-day precision, expressed as the relative standard deviation (RSD) were less than 4.5%, and accuracy (relative error) was better than 8.0% (n = 6). The analytical recovery of prilocaine HCl from plasma has averaged 96.5% and the recovery of internal standard (lidocaine HCl) reached 96.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method for plasma were 50 and 40 ng mL?1, respectively. Also the developed and validated method was applied to three healthy volunteers to whom a local anaesthesia with citanest was administered.  相似文献   

14.
An HPLC method with DAD detection was developed and validated for the simultaneous determination of zofenopril and hydrochlorothiazide in tablets. The separation was carried out through a gradient elution using an Agilent LiChrospher C18 column (250×4.0 mm id, 5 μm) and a mobile phase consisting of (A) water–TFA (99.9:0.1 v/v) and (B) acetonitrile–TFA (99.1:0.1 v/v) delivered at a flow‐rate of 1.0 mL/min. 8‐Chlorotheophylline was used as internal standard. Calibration curves were found to be linear for the two drugs over the concentration ranges of 5.0–40 and 1.0–20 μg/mL for zofenopril and hydrochlorothiazide, respectively. Linearity, precision, accuracy, specificity and robustness were determined in order to validate the proposed method, which was further applied to the analysis of commercial tablets. The proposed method is simple and rapid, and gives accurate and precise results.  相似文献   

15.

Fleroxacin is a third generation fluoroquinolone with broad spectrum antibacterial activity. In this work an LC-DAD method for the analysis of fleroxacin was developed and validated using UV detection at 286 nm. The method was validated for linearity, precision, robustness, LOD, LOQ, specificity and accuracy at concentrations of 0.2–20.0 μg mL−1 and r 2 = 1. The LOD and LOQ were 0.059 and 0.197 μg, respectively, the recoveries were 99.92–102.0% and the CV was less than 2.0%. The LC-DAD validated method provided analytical sensitivity, specificity and reproducibility suitable for quality control analysis.

  相似文献   

16.
A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 1-35 microg/mL and precision (relative standard deviation < 1.5%). The LOD and LOQ were 0.23 and 0.72 microg/mL, respectively, and good recoveries were achieved (98-101.8%). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.  相似文献   

17.

The aim of this study is to develop and validate a sensitive and specific stability-indicating reversed-phase high-performance liquid chromatographic (RP-HPLC) method for the quantitative determination of Sugammadex sodium together with its process and possible degradation impurities. The pKa value is 2.82. The chromatographic conditions have been optimized by the Hypersil Gold 250 mm X 4.6 mm, 3 µ RP-18 columns with gradient elution using a mobile phase composed of 0.1% phosphoric acid, acetonitrile, and methanol. The eluents were monitored at 205 nm with a flow rate of 1.0 mL/min with an injection volume of 20 µL. The optimized method produced symmetrical and sharp peaks with good separation between the process and degradation impurities. The forced degradation study was carried out under acid, base, oxidation, and thermal conditions to demonstrate the stability-indicating capability of the method. The method was validated as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 (R1) and showed excellent specificity, precision, linearity, accuracy, and robustness. The developed HPLC method was precise with a value of 0.25%. The relative standard deviation of accuracy represented by the recovery studies ranged between 89.5% and 104.6%. Linearity analyses indicated a correlation coefficient value of greater than 0.996 for Sugammadex and its known impurities. The LOD and LOQ values for Sugammadex ranged from 0.017% to 0.050%, and for its related impurities, they ranged from 0.015% to 0.055%. The stability of the analytical solution was evaluated and was stable for 75 h when stored at 5 °C. No chromatographic interference was observed during the degradation studies and also in the blank chromatogram.

  相似文献   

18.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Gajbhiye  Narendra A.  Makasana  Jayanti  Saha  Ajoy  Patel  Iren  Jat  R. S. 《Chromatographia》2016,79(11):727-739

A new and rapid method for simultaneous identification and estimation of bioactive triterpenoid glycosides [asiaticoside (AS) and madecassoside (MS)] and their aglycones [asiatic acid (AA) and madecassic acid (MA)] in Centella asiatica was developed by using high-performance liquid chromatography (HPLC) coupled with triple-quadrupole mass spectrometry (MS/MS). Estimation was based on multiple reaction monitoring (MRM) using the precursor → product ion combination for determination of four analytes using Alltima C18 column (50 × 4.6 mm, 3 µm). An electrospray ionization (ESI) tandem interface in positive mode was employed prior to mass-spectrometric detection. The method was subjected to a thorough validation procedure in terms of linearity, limit of detection (LOD) and quantification (LOQ), accuracy, and precision. Six-point calibration curves were linear in the range of 50–500 ng mL−1 for AS and MS, and 25–250 ng mL−1 for AA and MA, with excellent linearity (R 2 > 0.98). With the optimized conditions, the four analytes were detected accurately within 10 min. LOD and LOQ ranged from 2.5 to 5 and 10 to 15 ng mL−1, respectively. Method accuracy in terms of average recoveries of all four analytes ranged between 98.61 and 102.85 % at three spiking levels with intra- and interday precision relative standard deviation (RSD, %) of 1.01–4.62 and 1.13–4.16, respectively. The new method was successfully applied to estimate the concentration of these four bioactive compounds in extracts of C. asiatica prepared by nonpolar-to-polar solvents.

  相似文献   

20.
N‐acetylcysteine (NAC) and gentamicin sulfate (GS) are biologically and pharmaceutically relevant thiol‐containing compounds. NAC is well known for its antioxidant properties, whereas GS is an aminoglycoside that is used as a broadband antibiotic. Both pharmaceuticals play a significant role in the treatment of bacterial infections by suppressing the formation of biofilms. According to the European Pharmacopeia protocol, GS is analyzed by high performance liquid chromatography (HPLC) using gold electrodes for electrochemical detection. Here, we report the electrochemical detection of these compounds at NH2‐terminated boron‐doped diamond electrodes, which show significantly reduced electrode passivation, an issue commonly known for gold electrodes. Cyclic voltammetry experiments performed for a period of 70 minutes showed that the peak current decreased only by 1.6 %/7.4 % for the two peak currents recorded for GS, and 6.6 % for the oxidation peak of NAC, whereas at gold electrodes a decrease in peak current of 14.2 % was observed for GS, and of 64 %/30 % for the two peak currents of NAC. For their quantitative determination, differential pulse voltammetry was performed in a concentration range of 2–49 µg/mL of NAC with a limit of detection (LOD) of 1.527 µg/mL, and a limit of quantification (LOQ) of 3.624 µg/mL, respectively. The quantification of GS in a concentration range of 0.2–50 µg/mL resulted in a LOD of 1.714 µg/mL, and a LOQ of 6.420 µg/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号