首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) analytical method has been developed and validated for the determination of ospemifene in human plasma using ospemifene‐d4 as an internal standard. Solid‐phase extraction technique with Phenomenex Strata X‐33 μm polymeric sorbent cartridges (30 mg/1 mL) was used to extract the analytes from the plasma. The chromatographic separation was achieved on Agilent Eclipse XDB‐Phenyl, 4.6 × 75 mm, 3.5 μm column using the mobile phase composition of methanol and 20 mm ammonium formate buffer (90:10, v/v) at a flow rate of 0.9 mL/min. A detailed method validation was performed as per the US Food and Drug Administration guidelines and the calibration curve obtained was linear (r2 = 99) over the concentration range 5.02–3025 ng/mL. The API‐4500 MS/MS was operated under multiple reaction monitoring mode during the analysis. The proposed method was successfully applied to a pharmacokinetic study in healthy human volunteers after oral administration of an ospemifene 60 mg tablet under fed conditions.  相似文献   

2.
A sensitive, rapid and selective ultra‐performance liquid chromatography–tandem mass spectrometric (UPLC‐MS/MS) method was developed for the determination and pharmacokinetic study of domperidone in human plasma. Diphenhydramine was used as the internal standard. Plasma sample pretreatment involved a one‐step liquid–liquid extraction with a mixture of diethyl ether–dichloromethane (3:2, v/v). The analysis was carried out on an Acquity UPLCTM BEH C18 column. The mobile phase consisted of methanol–water containing 10 mmol/L ammonium acetate and 0.5% (v/v) formic acid (60:40, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionizationsource with positive mode. Each plasma sample was chromatographed within 2.1 min. The standard curves for domperidone were linear (r2 ≥ 0.99) over the concentration range of 0.030–31.5 ng/mL with a lower limit of quantification of 0.030 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 13% and accuracy (relative error) was from ?7.6 to 1.2% at three quality control levels. The method herein described was superior to previous methods and was successfully applied to the pharmacokinetic study of domperidone in healthy Chinese volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, rapid and sensitive liquid chromatography/positive ion electro‐spray tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the quantification of fexofenadine with 100 μL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed‐phase C18 column (5 μm, 100 × 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC‐MS/MS in positive ion mode using 502.1 → 466.2 and 446.0 → 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1–600 ng/mL with a correlation coefficient (r) of ≥0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid and sensitive high‐performance LC‐MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid‐liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass‐to‐charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2–100/0.5–250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC‐MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.  相似文献   

5.
A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for simultaneous quantification of ginsenosides Rg1, Re and notoginsenoside R1 in human plasma. Chromatography was performed on Capcell Pak C18 MG II column using a binary gradient using mobile phase A (5 mm ammonium formate solution) and B (methanol, containing 5 mm ammonium formate) at a flow rate of 0.3 mL/min. The entire chromatographic run time was 3.2 min. Quantification was achieved using multiple reaction monitoring in positive mode using API 3000. This method was validated in terms of specificity, linearity, precision, accuracy, matrix effect and stability. The calibration curves were linear in the concentration range of 0.020–5.00 ng/mL for ginsenosides Rg1, Re and notoginsenoside R1. The lower limit of quantification (LLOQ) of this method was 0.020 ng/mL. The intra‐run and inter‐run precision values were within 12.31% for ginsenoside Rg1, 14.13% for ginsenoside Re and 11.46% for notoginsenoside R1 at their LLOQ levels. The samples were stable under all tested conditions. This method was successfully applied to study the pharmacokinetics of ginsenoside Rg1 and notoginsenoside R1 in 24 healthy volunteers following oral administration of 200 mg Sanqi Tongshu Enteric‐Pellets Capsule.  相似文献   

6.
CSUOH0901, a novel anticancer derivative of nimesulide, exhibits very promising anticancer activities in various cancer cell lines. In order to support further pharmacological and toxicological studies of this promising anticancer drug candidate, an LC‐MS/MS method was developed and validated in accordance with the US Food and Drug Administration guidelines. The drug molecules were extracted from plasma samples by protein precipitation and then analyzed with LC‐ESI‐MS/MS. An excellent analyte separation was achieved using a phenomenex C18 column with a mobile phase of 90% methanol and 5 m m of ammonium formate. The validated linear dynamic range was between 0.5 and 100 ng/mL and the achieved correlation coefficient (r2) was >0.9996. The results of inter‐ and intra‐day precision and accuracy were satisfactory, that is, <12% for accuracy and within ±5% for precision at a low and high quality control concentrations, respectively. In addition, the analyte and internal standard (JCC76) were found to be stable under the storage conditions at ?20°C for about 2 months. Hence, the acquired results proved that the LC‐ESI‐MS/MS method developed is precise, accurate and selective for the quantification of CSUOH0901 in plasma, and can be used for pharmacokinetic studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A sensible ultra‐performance LC–MS method was developed and validated for the quantification of clopidogrel active metabolite in human plasma, with clopidogrel D4 as internal standard. Plasma pretreatment involved a one‐step protein precipitation with acetonitrile. The separation was performed by reverse‐phase chromatography on a C8 column. The method was linear over the concentration range of 1–150 ng/mL. The intra‐ and inter‐day precision values were below 17% and accuracy was from 1.7 to 7.5% at all quality control levels. The lower LOQ was 0.8 ng/mL. Sample analysis time was reduced to 5 min including sample preparation (limited to protein precipitation). The present method was successfully applied to a clopidogrel active metabolite pharmacokinetic study following oral administration to healthy volunteers.  相似文献   

8.
A sensitive, specific and simple LC‐MS/MS method was developed for the identification and quantification of bivalirudin in human plasma using diazepam as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under multiple‐reaction monitoring mode using electrospray ionization. The sample preparation consisted of an easy protein precipitation sample pretreatment with methanol. Chromatographic separation was achieved on a Zorbax Eclipse plus C18 100 × 2.1 mm column with a mobile phase of water–methanol–0.1% formic acid. The analytes were detected with a triple quadrupole Quantum Access with positive ionization. Ions monitored in the multiple‐reaction monitoring mode were m/z 1091 → 650 for bivalirudin (at 2.70 min) and m/z 285 → 193 for diazepam (at 3.85 min). The developed method was validated in human plasma with a lower limit of quantitation of 20 µg/L for bivalirudin. A linear response function was established for the range of concentrations 20–10,000 µg/L (r > 0.998) for bivalirudin. The intra‐ and inter‐day precision values for bivalirudin met the acceptance criteria as per US Food and Drug Administration guidelines. Bivalirudin was stable in the battery of stability studies, viz. bench‐top, freeze–thaw cycles and long‐term stability. The developed assay method was applied to an intravenous administration study in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A highly selective and sensitive liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry (LC‐APCI‐MS‐MS) was developed and validated for the quantitation and pharmacokinetic study of carbazochrome sodium sulfonate in human plasma. Protein precipitation with 14% perchloric acid solution was selected for sample preparation, and amiloride hydrochloride was employed as an internal standard. The analytes were separated on a Hypersil ODS‐2 column by a multiple‐step linear gradient elution with a mobile phase consisting of 0.2% formic acid solution and methanol pumped at a flow rate of 1.0 mL/min. The determination was optimized and carried out with positive atmospheric pressure chemical ionization by selective reaction monitoring of the ion of m/z 148, the protonated thermodegraded fragment of the free acidic form of carbazochrome sodium sulfonate selected as the parent, and the ion of m/z 107 as the optimum collision induced dissociation (CID) product. The method was fully validated over a concentration range of 0.5–50 ng/mL, with the lower limit of quantitation of 0.5 ng/mL. The application of the LC‐MS‐MS method was demonstrated for the specific and quantitative analysis of carbazochrome sodium sulfonate in human plasma from a pharmacokinetic study in 24 healthy male Chinese volunteers after a single oral administration of 90 mg carbazochrome sodium sulfonate capsules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, we developed and validated a highly sensitive, rapid and stable LC–MS/MS method for the determination of ibuprofen in human plasma with ibuprofen-d3 as a stable isotopically labeled internal standard (SIL-IS). Human plasma samples were prepared by one-step protein precipitation. The chromatographic separation was achieved on a Poroshell 120 EC-C18 (2.1 × 50 mm, 2.7 μm). Aqueous solution (containing 0.05% acetic acid and 5 mm NH4Ac) and methanol were selected as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in negative ion mode. Multiple reaction monitoring mode was used for quantification using target fragment ions m/z 205.0 → 161.1 for ibuprofen and m/z 208.0 → 164.0 for SIL-IS, respectively. This method exhibited a linear range of 0.05–36 μg/ml for ibuprofen with correlation coefficient >0.99. Mean recoveries of ibuprofen in human plasma ranged from 78.4 to 80.9%. The RSD of intra- and inter-day precision were both < 5%. The accuracy was between 88.2 and 103.67%. The matrix effect was negligible in human plasma, including lipidemia and hemolytic plasma. A simple, efficient and accurate LC–MS/MS method was successfully established and applied to a pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ibuprofen granules.  相似文献   

12.
Easy‐to‐use early cancer detection methods based on metabolomics using serum samples have been developed recently. Among metabolites, amino acids and acylcarnitine are two of the most suitable candidates for diagnosing lung cancer. The purpose of the present study was to develop a novel, sensitive and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method to simultaneously determine 13 amino acids and 8 acylcarnitines in lung cancer patients in serum. After derivatization, the 21 analytes were separated using a C18 column with gradient elution program in 14 min, obtaining recovery within 90.4–113.8% and precision within 0.3–14.8%. The method was successfully applied in concentration determination of lung cancer patients and healthy controls. The results showed that the serum concentration of lung cancer patients were significant from those of healthy controls.  相似文献   

13.
A sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for simultaneous determination of R‐bambuterol and its active metabolite R‐terbutaline in human plasma and urine was established. The inhibition for the biotransformation of R‐bambuterol in plasma was fully investigated. Plasma samples were prepared on ice and neostigmine metilsulfate added as a cholinesterase inhibitor immediately after sample collection. All samples were extracted with ethyl acetate and separated on a C18 column under gradient elution with a mobile phase consisting of methanol and water containing 5 mm ammonium acetate at a flow rate of 0.6 mL/min. The analytes were detected by an API 4000 tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method was highly sensitive with the lower limit of quantification (LLOQ) of 10.00 pg/mL for each analyte in plasma. In urine samples, the LLOQs were 20.00 and 500.0 pg/mL for R‐bambuterol and R‐terbutaline, respectively. The intra‐ and inter‐day precisions were <12.7 and <8.6% for plasma and urine, respectively. The analytical runtime within 6.0 min per sample made this method suitable for high‐throughput determination. The validated method has been successfully applied to the human pharmacokinetic study of R‐bambuterol involving 10 healthy volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A high‐throughput, sensitive, and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the rapid quantitation of β ‐hydroxy‐β ‐methylbutyrate (HMB) in human plasma has been developed and validated for routine use. The method uses 100 μL of plasma sample and employs protein precipitation with 0.1% formic acid in methanol for the extraction of HMB from plasma. Sample extracts were analyzed using LC–MS/MS technique under negative mode electrospray ionization conditions. A 13C–labeled stable isotope internal standard was used to achieve accurate quantitation. Multiday validation was conducted for precision, accuracy, linearity, selectivity, matrix effect, dilution integrity (2×), extraction recovery, freeze–thaw sample stability (three cycles), benchtop sample stability (6 h and 50 min), autosampler stability (27 h) and frozen storage sample stability (146 days). Linearity was demonstrated between 10 and 500 ng/mL. Inter‐day accuracies and coefficients of variation (CV) were 91.2–98.1 and 3.7–7.8%, respectively. The validated method was proven to be rugged for routine use to quantify endogenous levels of HMB in human plasma obtained from healthy volunteers.  相似文献   

15.
This paper presents a selective and efficient sample preparation procedure for NLLGLIEAK, signature peptide for the small cell lung cancer (SCLC) biomarker ProGRP, in human serum. The procedure is based on immuno‐capture of ProGRP in 96‐wells microtiter plates coated with the mAb E146. After immuno‐capture and thorough rinse, trypsin was added for in‐well digestion. Subsequently the signature peptide was enriched by SPE and determined by LC‐MS/MS. Various steps in the procedure were optimized to achieve a low LOD such as dilution of sample, tryptic digestion, and SPE cleanup and peptide enrichment conditions. A single quadropole MS was used during optimization of the method. A triple quadropole MS was used in the method evaluation in order to improve sensitivity. The evaluation showed good repeatability (RSD, 11.9–17.5%), accuracy (3.0–6.6%), and linearity (r2 = 0.995) in the tested range (0.5–50 ng/mL). LOD and LOQ were in the pg/mL area (0.20 and 0.33 ng/mL, respectively), enabling the determination of clinically relevant concentrations. The method was applied to two patient samples and showed good agreement with an established immunological reference method. The final method was compared to a previous published LC‐MS method for the determination of ProGRP in serum based on protein precipitation and online sample cleanup. Both showed acceptable method performance, however, the immuno‐capture LC‐MS method was superior with respect to sensitivity. This illustrates the large potential of immuno‐capture sample preparation prior to LC‐MS in protein biomarker quantification.  相似文献   

16.
Tiopronin (TP) is a synthetic thiol compound without chromophore. By optimizing the chromatographic conditions and sample preparation processes, an improved LC‐MS/MS analytical method without derivatization has been developed and validated to determine TP concentrations in human plasma. After reduction with 1,4‐dithiothreitol, plasma samples were deproteinized with 10% perchloric acid. The post‐treatment samples were analyzed on a C8 column interfaced with a triple quadrupole tandem mass spectrometer in negative electrospray ionization mode. Methanol–5 mmol/L ammonium acetate (20:80, v/v) was used as the isocratic mobile phase. The assay was linear over the concentration range of 40.0–5000 ng/mL. The intra‐ and inter‐day precisions were within 12.9% in terms of relative standard deviation and the accuracy within 5.6% in terms of relative error. This simple and sensitive LC‐MS/MS method with short analytical time (3.5 min each sample) was successfully applied to the pharmacokinetic study of TP in healthy Chinese male volunteers after an oral dose of 300 mg TP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A highly selective and sensitive LC‐MS‐MS method was developed and validated to quantify tiopronin in human plasma, using fudosteine as the internal standard (IS). L ‐Cysteine and 1,4‐dithiothreitol (DTT) were used as the reducer and the stabilizer to release and stabilify tiopronin from a dimmer and mix forms with endogenous thiols in the treatment of plasma samples. After a simple liquid–liquid extraction with ethyl acetate in acidic condition, the post‐treatment samples were analyzed on a C18 column interfaced with a triple‐quadruple tandem mass spectrometer using negative electrospray ionization. Methanol and water (40:60, v/v) were used as the isocratic mobile phase, with 0.2% formic acid and 1.0 mM tris (hydroxymethyl) aminomethane (Tris) in water. The method was validated to demonstrate the specificity, lower limit of quantification, accuracy and precision of measurements. The assay was linear over the concentration range 0.078–10 μg/mL. The correlation coefficients for the calibration curves ranged from 0.9980 to 0.9990. The intra‐ and inter‐day precisions, calculated from quality control samples, were not more than 10.49%. The method was employed in a pharmacokinetic study after oral administration of 200 mg tiopronin tablets to 24 healthy volunteers. Copyright © 2009 John Wiley & Sons, Ltd  相似文献   

18.
A new, rapid, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous quantification of tenofovir and lamivudine in human plasma using abacavir as an internal standard. An API‐4000 LC‐MS/MS with electrospray ionization was operated in multiple‐reaction monitoring mode for the analysis. The analytes were extracted from plasma by solid‐phase extraction technique using an Oasis HLB cartridge. The reconstituted samples were chromatographed on a Chromolith ROD speed C18 column using a mixture of 0.1% formic acid in water and acetonitrile (90:10 v/v) at a flow‐rate of 1 mL/min. The method was validated as per the FDA guidelines. The calibration curves were found to be linear in the range of 5–600 ng/mL for tenofovir and 25– 4000 ng/mL for lamivudine. The intra‐ and inter‐day precision and accuracy results were well within the acceptable limits. A run time of 2.8 min consumed for each sample made it possible to analyze more samples per day. The proposed assay method was found to be applicable to a pharmacokinetic study in human male volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
An ultra‐high‐performance liquid chromatography–mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine‐N‐oxide (TMAO) simultaneously with TMAO‐related molecules l ‐carnitine and γ‐butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)‐type column with ammonium acetate–acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号