首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and rapid method for the preconcentration of Co2+ and Zn2+ as their 2-guanidino-benzimidazole chelates is proposed using an octadecyl silica cartridge. The retained analytes were recovered with a mixture of 5mL of 0.01M HNO3 and 5mL of methanol. The metal ions in the effluent were determined by flame atomic absorption spectrometry. The effect of different parameters, such as sample matrix, amount of ligand, type of eluent for elution of ions from cartridge, flow rates of sample solution and eluent, breakthrough volume, and limit of detection, were evaluated. The effects of various cationic and anionic interferences on the percent recovery of Co2+ and Zn2+ were also studied. Quantitative extraction efficiencies were obtained by elution of the cartridge with a minimal amount of solvent. Hence, with a typical preconcentration factor of 50, the limits of detections of the proposed method are 0.26 and 1.62ngmL–1 for Zn2+ and Co2+, respectively. The method was applied to the determination of zinc and cobalt ions in different water samples.  相似文献   

2.
A novel nano-TiO2 polymer modified glassy carbon (GC) electrode was developed for the determination of an organophosphorous pesticide, fenitrothion (-NO2), in citrate buffer solution. The electrochemical behavior of fenitrothion was characterized by using cyclic voltammetry. An irreversible form, -NO2, was transformed into a reversible redox couple (-NHOH/-NO), and it can be used to determine trace fenitrothion by square wave voltammetry. The experimental parameters, such as film thickness, pH value, accumulation potential and time were optimized. Interestingly, a cyclic voltammetric scan was observed to be more effective than a constant potential for the accumulation of fenitrothion. A linear response over a fenitrothion concentration of 2.5×10–8 to 1.0×10–5M was exhibited, with a detection limit of 1.0×10–8M (S/N=3). The high sensitivity and selectivity of this film electrode was demonstrated by its practical application to the determination of trace amounts of fenitrothion in lake water and apple samples.  相似文献   

3.
A new approach, based on non-aqueous capillary electrophoresis separation and indirect photometric detection, was established for the determination of the transition metal ions Pb2+, Zn2+ and Cd2+. Under optimized conditions, the method produced baseline separation of these three metal ions. The linear range and detection limits were 1050µM, 1.9µM for Cd2+; 1050µM, 2.1µM for Zn2+; and 20100µM, 3.8µM for Pb2+, respectively.  相似文献   

4.
Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A Tl-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25mmø) by filtration under suction using a glass funnel with an effective filtration area of 0.64cm2. As a result, a circular thin layer of the resin phase with a diameter of 9mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mmø hole to put it into a sample cup containing 100µL of 10mM HNO3 containing 0.5mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0–4ng of Tl in 100mL of a sample solution. The detection limit obtained by 3 method was 0.19ng. The proposed method was applied to the determination of Tl in natural water samples. The results showed the concentration of Tl in seawater was 12.1±1.8pgmL–1 for the calibration graph method and 12.6±1.4pgmL–1 for the standard addition method. A snowmelt sample contained 20.7±1.0pgmL–1 of Tl.  相似文献   

5.
A sensitive and selective solid phase spectrophotometric method for the determination of trace amounts of inorganic mercury is described. Hg2+ was sorbed on a silica gel-packed column as an Hg2+N,N-bis(2-mercaptophenyl)ethanediamide (H2L) complex. The Hg2+ complex was eluted from the column using 7mL of acetone. Various parameters including pH, column flow rate, and ligand concentration were optimized. The complex was found to obey Beers law from 2.3 to 73.7µgmL–1 within the optimum range when the preconcentration factor was two. The effective molar absorption coefficient at 523nm was 1.17×103Lmol–1cm–1 at 523nm. The concentration limits in Beers law dropped from 0.09 to 2.95µgmL–1 within the optimum range when the preconcentration factor was 50. The relative standard deviation at a concentration level of 5µgmL–1 Hg2+ (9 repetitive determinations) was 1.6%. The detection limits are 0.34µgmL–1 and 0.015µgmL–1 when the preconcentration factors are 2 and 50, respectively. The method has been used for routine determination of trace levels of Hg2+ in natural waters. The potential application of this method for the removal of Hg2+ from natural samples (sea water and lake water) spiked with 100ngmL–1 of Hg2+ was studied. In order to validate the proposed method, LGC 6156 (harbour sediment – extractable metals) was analysed by this method. The results proved that excellent extraction of Hg2+ from both natural water samples was obtained by solid phase extraction using N,N-bis(2-mercaptophenyl) ethanediamide.  相似文献   

6.
A -mercaptopropionic acid (MPA) self-assembled monolayer modified electrode (MPA/SAM/Au) on a gold electrode has been fabricated. The characterization of the MPA/SAM/Au was investigated using attenuated total reflection-fourier transform infrared (ATR-FTIR) and A.C. impedance. The electrochemical behaviors of p-aminophenol (p-AP) were studied at the MPA/SAM/Au by cyclic voltammetry and semi-derivative voltammetry (SDV) in BR buffer solution. The modified electrode shows excellent electrocatalytic activity for the redox of p-AP and accelerates the electron transfer rate. The diffusion coefficient (D) is 4.55×10–6cm2s–1. The oxidative peak current increases linearly with the concentration of p-AP in the range of 4.0×10–88×10–6molL–1 and 1.0×10–52×10–4molL–1 by square wave voltammetry response, respectively. The detection limit (three times the signal blank/slope) is up to 1.2×10–8molL–1. The modified electrode is able to eliminate the interference of p-benzenediol, o-benzenediol and o-AP at a 40-, 90- or 70-fold concentration of p-AP, and it has been satisfactorily used for the determination of the real sample.  相似文献   

7.
2,3-Dihydroxypyridine loaded (via –N=N–linker) Amberlite XAD-2 (AXAD-2-DHP) was prepared and characterized by elemental analyses, TGA and FT-IR spectra. It (1g packed in a column of 1cm diameter; surface area 135.5m2g–1) was found to be an effective solid phase sorbent for enriching Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+ at pH 3.5 to 7.0 using flow rates between 1.0–5.0mLmin–1. For desorption (recovery 97.0–99.8%) of the metal ions, 8 to 10mL of 2.0molL–1 HCl or 1.5molL–1 HNO3 at a flow rate of between 2.0 and 4.0mLmin–1 were found most suitable. The t1/2 (time for 50% sorption) is between 2 and 10min when a 50mL solution (containing a total amount of metal of 2mg) was equilibrated with 0.5g of resin. Sorption of all metal ions except Pb2+ follows the Langmuir model, whereas for Pb the data fits with the Freundlich model. The sorption capacity is between 60.7 (for Cd) and 406.7 (for Cu) µmolg–1. The resin can withstand an acid concentration of 6molL–1 and can be reused for thirty cycles of sorption–desorption. The preconcentration factor varies between 100 and 300. For Cd, Ni and Cu the sorption capacity of 2,3-dihydroxypyridine loaded cellulose is lower than that of the present resin. The tolerance limits of electrolytes, humic acid, complexing agents, Ca2+ and Mg2+ in the enrichment of all metal ions are reported. The limits of detection are 3.88, 5.37, 8.72, 13.88, 4.71, 1.24, 0.59 and 0.30µgL–1 for Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+, respectively. The calibration curves for flame AAS determination were linear in the ranges 0.018–1.0, 0.067–5.0, 0.2–5.0, 0.9–20, 0.028–2.0, 0.077–5.0, 0.19–10 and 0.1–3.5µgmL–1, respectively. All the eight metal ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples have been quantitatively enriched with Amberlite XAD-2-DHP and determined by flame atomic absorption spectrometry.  相似文献   

8.
A carbon black microelectrode modified by -MnO2 has been prepared. The electrocatalytical oxidation of ascorbic acid (AA) at this microelectrode was investigated. The 2nd-order linear scan voltammograms of AA are recorded from –0.5 to 0.5V (vs. SCE). The relationship between the oxidation peak current of AA and its concentration in the range of 1.0×10–64.0×10–3molL–1 is linear. The detection limit (3) was found to be 6.0×10–7molL–1. Also, the determination of AA in samples is evaluated, and the results are satisfactory.  相似文献   

9.
A novel chromogenic reagent, 2-(2-sulfo-4-acetylphenylazo)-7-(2,4,6-trichlorophenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid 1, was prepared by diazo coupling of 4-acetylaniline-2-sulfonic acid and 2,4,6-trichloroaniline to chromotropic acid through –N=N– groups. Based on this reagent, a simple, sensitive and selective spectrophotometric method was developed for the determination of lead. In 0.20M phosphoric acid medium, lead reacts with 1 to form a 1:2 blue complex with an absorption maximum of 654nm. Beers law is obeyed in the range of 0–0.6mgL–1 of lead. The apparent molar absorptivity is 1.25×105Lmol–1cm–1. The detection limit and quantification limit were found to be 0.63µgL–1 and 2.1µgL–1, respectively. The relative standard deviation for eleven replicate measurements was of 2.6%. The interference of foreign ions was also investigated. All the other foreign ions studied did not interfere with lead determination except for Ca(II) and Ba(II). The interference caused by Ca(II) and Ba(II) can be eliminated by prior extraction of lead with potassium iodide-methylisobutylketone (KI-MIBK). The proposed method was applied to the determination of lead in certified samples with satisfactory results.  相似文献   

10.
A simple and novel electrogenerated chemiluminescence (ECL) method for the determination of sulfite has been developed based on the energy transfer ECL process. It was found that a weak ECL signal of sulfite was electrochemically generated on a platinum electrode in neutral aqueous solution. The signal was strongly enhanced by rhodamine B as an energy receptor and further enhanced by the neutral surfactant Tween 80. In 0.10M phosphate buffer solution (pH=7.5) containing 2.0×10–6gmL–1 rhodamine B and 0.4% (v/v) Tween 80, the ECL response to the concentration of sulfite at a potential of 0.82V was linear over a range of 1.0×10–7gmL–1 to 8.0×10–6gmL–1, and the detection limit was 5×10–8gmL–1. The relative standard deviation (n=11, 1.0×10–6gmL–1) was 3.8%. The proposed method has been successfully applied to the determination of sulfite in pharmaceutical injections and white sugar samples.  相似文献   

11.
A simple commercial graphite pencil electrode (GPE) was utilized for monitoring caffeine using the square-wave anodic stripping voltammetry (SWASV) method. This method was applied to determine the caffeine levels in several tea samples, which yielded a relative error of 1% in the concentrations. Caffeine was deposited at 0.0V (vs. Ag/AgCl), then reduced at +1.40V to strip it on the GPE. Optimal experimental conditions for the analysis were found to be as follows: pH value of 9 for the medium; deposition potential of 0.0V; deposition time of 120s; SW frequency of 25Hz; SW amplitude of 45mV, and step potential of 6mV. Given these optimum conditions, a linear range was observed within the concentration of 0500mgL–1. At caffeine concentrations of 50.0, 250.0, and 500.0mgL–1, the relative standard deviations in measured concentrations (n=12) were 0.19, 0.09, and 0.11%, respectively. The detection limit was found to be 9.2mgL–1, which is comparable with the result obtained using a carbon paste electrode, equivalent to 8.2mgL–1.  相似文献   

12.
A microcolumn on-line preconcentration and separation system was developed for the flame atomic absorption spectrometric (FAAS) determination of trace levels of gold and palladium. The analytes were selectively adsorbed onto the microcolumn packed with 2-mercaptothiazole immobilized silica gel (MBTSG) in an acidity range of 0.1 to 6.0M HCl at a sampling flow rate of 4.0mLmin–1. The analytes adsorbed could be desorbed by a thiourea solution with a flow rate of 2.0mLmin–1. Most of the common coexisting metal ions at a concentration of 25.0mgmL–1 and anions at a concentration of 50.0mgmL–1 did not interfere with the preconcentration and determination of Au and Pd. The limits of detection (LOD), defined as three times the standard deviation of the blank (3), of Au and Pd are 10ngmL–1 and 26ngmL–1, respectively, with a preconcentration time of 60s. The relative standard deviation (RSD) is about 2.0% for 0.20µgmL–1 Au and 0.30µgmL–1 Pd. With a sample loading time of 30min, 6.7ngmL–1 Au and 10ngmL–1 Pd can be preconcentrated quantitatively. A geological sample, an anode slime and a secondary nickel alloy were successfully determined with the proposed method, and the results obtained showed good agreement with the certified values.Received December 23, 2002; accepted May 14, 2003 Published online August 8, 2003  相似文献   

13.
A new method of SS-RTP for the determination of trace silver has been established. This method is based on the fact that Ag+, when activated by ,-bipyridyl (bipy) in a media of HAc–NaAc (pH=4.9), can catalyze the reaction of Rhodamine B (RhoB) oxidized by K2S2O8, thus causing the Solid Substrate Room-Temperature Phosphorescence (SS-RTP) of RhoB to be quenched. The activating efficiency of bipy is 6.7 times higher than that of o-phenanthroline (phen). The reduction of the phosphorescence intensity (Ip) of RhoB is directly proportional to the concentration of Ag+ ions in the range of 1.6016.0agspot–1 (0.40µLspot–1). The regression equation of the working curve can be expressed as Ip=18.78+5.100mAg+ (agspot–1) (r=0.9994, n=6), the detection limit is 0.28agspot–1. This rapid, accurate and sensitive method has been successfully applied to the determination of trace silver in tea and human hair samples, and the results agree well with the Atomic Absorption Spectroscopy (AAS) method. The mechanism of the catalyzing reaction is also discussed.  相似文献   

14.
A sub-micrometer thin-layer DNA modified carbon fiber microcylinder electrode was prepared by electrodeposition of ct-DNA at 1.5V (vs. Ag/AgCl). The voltammetric behavior of dopamine (3-hydroxytyramine) was investigated at the modified electrode. It was found that the modified electrode exhibits a highly electrocatalytic activity toward dopamine oxidation. Differential pulse voltammetry was used for determination of dopamine in pH 7.4 phosphate buffer solution. A linear response of the peak current versus the concentration was found in the range of 4×10–6 to 10–4molL–1 at 10–4molL–1 AA (ascorbic acid) coexistence (R=0.9959) and the range of 6×10–5 to 10–3molL–1 at 10–3molL–1 AA (R=0.9960). The presence of a high concentration of ascorbic acid did not interfere with the determination. The proposed method exhibited good recovery and reproducibility. This method can be applied to the detection of DA in real samples.  相似文献   

15.
A new method for the simultaneous determination of heavy metal ions in Chinese herbal medicine by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The Chinese herbal medicine samples were digested by microwave digestion. Lead, cadmium, mercury, nickel, copper, zinc, and tin ions in the digested samples were pre-column derivatized with tetra-(4-chlorophenyl)-porphyrin (T4-CPP) to form the colored chelates which were then enriched by solid phase extraction with C18 cartridge and eluted from the cartridge with tetrahydrofuran (THF). The chelates were separated on a Waters Xterra RP18 column by gradient elution with methanol (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) and THF (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) as mobile phase at a flow rate of 0.5mLmin–1 and detected with a photodiode array detector in the range of 350–600nm. In the original samples the detection limits of lead, cadmium, mercury, nickel, copper, zinc and tin are 4ngL–1, 3ngL–1, 6ngL–1, 5ngL–1, 2ngL–1, 6ngL–1, and 4ngL–1, respectively. This method was applied to the determination of lead, cadmium, mercury, nickel, copper, zinc and tin in Chinese herbal medicine samples with good results.  相似文献   

16.
A new macrocyclic ligand, 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) (refered to as dipon) exhibits high thermodynamic and kinetic selectivity for Cu2+ compared to other transition metal ions. The initial-rate method (=310nm, pH=3.75, cL4.6×10–3molL–1) was chosen as an optimal experimental approach in order to achieve maximum sensitivity of determination. The dynamic range of the method is (5–200)×10–6molL–1, and the detection limit is 2.5×10–6molL–1. A standard addition procedure was applied to the kinetic determination of Cu2+ to eliminate the effect of interfering ions (e.g. Zn2+, Ca2+, Mg2+, Cd2+, Pb2+, Mn2+, Co2+, Ni2+, HCO3, Cl, SO42–, etc.). The method was tested on artificial and real samples (alloys, pure and spiked mineral water) and gave satisfactory results which are in agreement with the values for some certified materials. The advantage of the proposed method is rapidity, simplicity and robustness in the presence of other metal ions.  相似文献   

17.
Electrogenerated chemiluminescences (ECLs) of quinolizidine alkaloids including matrine (MT), sophocarpine (SC), and sophoridine (SRI) are studied. The light emission is caused by an electro-oxidation reaction between Ru(bpy)32+ and the tertiary amino group on the alkaloid compounds. A thin-layer flow cell equipped with a glassy carbon disk electrode (22.1mm2) at the potential of +1.30V (vs. Ag/AgCl) was applied for ECL observation. MT, SC and SRI were separated and quantitatively determined within 25min by an ODS-80 Ts reversed-phase column with a mobile phase containing 80mmolL–1 NaH2PO4–K2HPO4 buffer+acetonitrile (7:3)+40mmolL–1 sodium dodecyl sulfate (pH 6.5). The determination limit at an S/N of 3 ranged from 3×10–9gmL–1 for MT, 6×10–9gmL–1 for SC and 1×10–9gmL–1 for SRI. The recoveries are from 92 to 108%, with repeatability ranging from 1.3 to 4.5% (relative standard deviation). The method was successfully applied to the determination of quinolizidine alkaloids in Sophora flavescens samples.  相似文献   

18.
Active silica gel phase (I) was chemically modified to the corresponding amino- (SiNH2) and chloro- (SiCl) derivatives via silylation reactions. These were used to synthesize two newly modified silica gel phases (II, III) by direct chemical reaction with 2-hydroxynaphthaldehyde (2-HNA). The surface coverage values are 370, 432µmolg–1 and 320, 355µmolg–1 for (II) and (III), on the basis of thermal desorption and metal probe testing method, respectively. The metal sorption properties of silica gel phases (II, III) were studied and compared with active silica gel phase (I). The maximum determined metal capacity values were found to be 10–110, 20–290 and 20–370µmolg–1 for phases I, II and III, respectively. The distribution coefficient values (Kd) were also determined for a series of metal ions, and the results showed that the two new chemically modified phases (II and III) were highly selective for Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+. The potential applications of silica gel phases (II, III) as solid phase extractors for the same five metal ions spiked in drinking tap water (1.000µgmL–1) were found to give percentage recovery values in the range of 90.2–96.3±4.1–6.3%, while pre-concentration of the same five metal ions spiked in drinking tap water (50.0ngmL–1) was successfully accomplished with a percentage recovery range of 92.6–95.8±4.8–5.7%.Received December 16, 2002; accepted May 14, 2003 published online September 1, 2003  相似文献   

19.
A simple and reliable electrochemical method for the determination of bismuth in water and nickel metal samples using a sodium montmorillonite (SWy-2) modified carbon paste electrode was described. Due to its strong cation-exchange ability and adsorptive characteristics, SWy-2 significantly enhances the sensitivity of determination for Bi3+. Bi3+ is firstly preconcentrated and then reduced on the modified electrode surface at –0.50V. After that, reduced bismuth is stripped from the electrode surface during the positive potential sweep of –0.50V to 0.20V, and a well-defined stripping peak at –0.12V appears. The stripping peak current is proportional to the concentration of Bi3+ from 4×10–9molL–1 to 1×10–6molL–1. The detection limit (signal-to-noise=3) is 1×10–10molL–1 after 5min. accumulation. The proposed method was successfully applied to the determination of bismuth in water and nickel metal samples.  相似文献   

20.
The fabrication and electrochemical characteristics of a penicillamine (PCA) self-assembled monolayer modified gold electrode were investigated. The self-assembled electrode shows obvious electrocatalytic activity for the oxidation of epinephrine (EP). In phosphate buffer (pH 7.73), a sensitive oxidation peak was observed at 0.190V with the PCA modified Au electrode. The peak current is proportional to the concentration of EP in the range of 2.0×10–56.0×10–4molL–1 and 5.0×10–6 2.0×10–4molL–1 for cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with the detection limits of 1.8×10–7 and 1.3×10–7molL–1, respectively. The possible reaction mechanism is also discussed. The PCA self-assembled monolayer modified gold electrode is highly stable and can be applied to the determination of EP in practical injection samples. Application is simple, rapid and produces accurate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号