首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Massively parallel sequencing (MPS) technologies have the ability to reveal sequence variations within STR alleles as well as their nominal allele lengths, which have traditionally been detected by CE instruments. Recently, Thermo Fisher Scientific has updated the MPS-STR panel, named the Precision ID GlobalFiler next-generation sequencing (NGS) STR Panel version 2, with primers redesigned to add two pentanucleotide tandem repeat loci and profile interpretation supported by the Converge software. Using the Ion Chef System, the Ion S5XL System, and the Converge software, genetic variations were characterized within STR repeat and flanking regions of 30 autosomal STR markers in 115 unrelated individuals from two Chinese population groups (58 Tibetans and 57 Hans). Nineteen STRs demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. In total, 390 alleles were identified by their sequences compared with 258 alleles that were identified by length. Of these 92 sequence variants found within the STR repeat regions, 40 variants were located in STR flanking regions. Additionally, the agreement of the results with CE data was evaluated, as was the ability of this new MPS panel to analyze case-type (11 samples) and artificially degraded samples (seven samples in triplicate). The results generated from this study illustrate that extensive sequence variation exists in commonly used STR markers in the selected population samples and indicate that this NGS STR panel has the potential to be used as an effective tool for human forensics.  相似文献   

2.
Linkage disequilibria (LD) between alleles and haplotypes of human leucocyte antigen, locus A (HLA) and STR loci located in the human major histocompatibility complex were analyzed in order to investigate whether or not HLA alleles and haplotypes are predictable by alleles or haplotypes of HLA STRs. Standardized genotyping of eight STR loci (D6S2972, D6S2906, D6S2691, D6S2678, D6S2792, D6S2789, D6S273, and DQIV) was performed by CE on 600 individuals from 150 Austrian Caucasoid families with known HLA‐A,‐B,‐C and –DRB1 typing. From those, 576 full haplotypes of four HLA and eight STR loci were obtained. Haplotypes of two flanking STRs predicted HLA alleles and two‐locus HLA haplotypes better than single STR alleles, except HLA‐DRB1 alleles (92% were in LD with DQIV alleles only). A percentage of 65–86% of three and four‐locus HLA haplotypes were in LD with haplotypes of three, four, and eight of their flanking STR loci including numerous clear‐cut predictions (20–61%). All eight and a set of the four most informative STR loci D6S2972, D6S2678, D6S2792, and DQIV could identify all HLA identical and nonidentical siblings in 138 pairs of siblings. The results of this proof of concept study in Austrian Caucasoids show, that HLA STRs can aid the definition of HLA‐A,‐B,‐C,‐DRB1 haplotypes and the selection of sibling donors for stem cell transplantation.  相似文献   

3.
We report the evaluation of short tandem repeat (STR) locus D2S1242 (GDB ID G00-309-429) for forensic purposes, investigated by polymerase chain reaction (PCR) amplification and both native and denaturating polyacrylamide gel electrophoresis in 147 unrelated Austrians. No deviations from Hardy-Weinberg expectations were observed. The mean exclusion chance (MEC) was 0.669, the discriminating power (DP) was 0.947, and the observed heterozygosity rate was 0.856. An allelic ladder consisting of eight sequenced alleles (141-167 and 175 bp) was constructed. Sequence analysis revealed that the locus comprised two repeat motifs varying in number between alleles GAAA and GAAG. According to the number of tetranucleotide repeats the smallest allele was designated as 10 and the largest allele as 18.  相似文献   

4.
The ABO locus on chromosome 9 contains many more alleles than are currently used routinely in forensic science. The use of single-strand conformation polymorphism (SSCP) can separate sequence polymorphisms that differ by only one base. The SSCP process used allows for both single- and double-stranded polymerase chain reaction (PCR) products to be visualized. The six ABO genotypes can be differentiated by the allele-specific B and O SSCP patterns. The double-stranded DNA produced 'hybrid' bands due to heterozygous samples and allowed sequence diversity to be detected between alleles of heterozygotes. These 'hybrid' bands are valid markers to confirm genotypes of specimens.  相似文献   

5.
Lee JC  Tsai LC  Liao SP  Linacre A  Hsieh HM 《Electrophoresis》2010,31(23-24):3889-3894
We report on the polymorphisms exhibited by three hypervariable regions within the D-loop of Columba livia (pigeon) mitochondrial DNA. A total of 131 samples were taken from 131 randomly selected birds and used in the analyses of SNPs, a variable number of tandem repeats (VNTR) and an STR locus using CE. The number of repeats for the VNTR ranged from 2 to 8 producing 21 haplotypes, with 54 individuals exhibiting heteroplasmy. The STR locus exhibited multiple and continuous repeats within each individual and these patterns were not reproducible with individuals of the same maternal lineage, where different haplotypes were noted. Combining the SNP and VNTR loci produced 38 haplotypes, with the power of discrimination being 0.93. The polymorphic regions of D-loop observed in this study are potential markers for maternal relationship identification.  相似文献   

6.
We present a high-throughput single-strand conformation polymorphism (SSCP) method, performed on a commercially available capillary array DNA sequencer. We tested various sieving matrices and electrophoretic conditions, using 51 DNA fragments which included 45 fragments carrying only one single nucleotide polymorphism (SNP), 4 fragments having two SNPs and 2 fragments with insertion or deletion. Resolution of alleles was improved by increasing concentrations of both sieving matrices and buffers, and all examined polymorphisms of DNA fragments were detected, most of them (45 fragments) as clearly split allele peaks in heterozygotes. Allele frequencies of SNPs can be estimated accurately by determining the relative amounts of alleles in pooled DNA. In this method, the turn-around time for the analysis of 96 samples is less than 3 h. These results demonstrate that capillary array-based SSCP is an efficient and accurate technique for the large-scale quantitative analysis of mutations/polymorphisms.  相似文献   

7.
We used the variable number tandem repeat (VNTR) polymorphism and the ten short tandem repeat (STR) polymorphisms to study a number of disputed paternity cases in the Japanese population. For the determination of VNTR locus (D1S80) and the ten STR loci (vWA, F13B, TH01, TPOX, CSF1PO, F13A01, LPL, D3S1744, D12S1090, D18S849) we used polymerase chain reaction (PCR) amplification and the vertical polyacrylamide gel electrophoresis technique followed by SYBR green I staining. The irregular repeats were analyzed by sequencing from bands of vertical polyacrylamide gel electrophoresis using the latest gene analyzing equipment, the ABI PRISM 310 Genetic Analyzer. The probable genotypes of the deceased putative father were deduced by Komatu's method from the genotypes of the widow and the genotypes of their children. The calculation of paternity probability used the Essen-Moller formula and Bayes's theorem. Calculated in eleven loci, the distinguishing probabilities (DP) and the mean exclusion chance (MEC) were 0.9999 and 0.9989, respectively. Therefore, information obtained from eleven DNA polymorphisms is enough to determine paternity plausibility.  相似文献   

8.
Short tandem repeat (STR) automatic typing technology is extensively used in forensic laboratories with commercial kits, in rare cases genotyping misinterpretations or mislabeling may occur due to unexpected rare alleles. This study refers to the investigation of several rare alleles observed from routine cases. Besides cross-kit verification with Goldeneye 25A (Beijing PeopleSpot Inc, China) and Huaxia platinum (Thermo Fisher Scientific, USA) kits, the next-generation sequencing technology by MiSeq FGx System (Illumina, USA) was applied to further validation. To solve the inconsistent outcomes reached by the above mentioned approaches at D2S441 locus, single gene amplification, gene cloning, and genetic sequencing was also performed. As a result, five rare alleles were detected. Two novel alleles of allele 3 at the D13S317 locus and allele 5 at the D2S441 locus were found; three previously reported alleles of allele 9 at D1S1656 locus, allele 19 at Penta D locus, and allele 28 at D12S391 locus in STRBase were initially supplemented with sequence information. We, therefore, propose that such uncommon observations with rare events should be carefully investigated and interpreted.  相似文献   

9.
《Electrophoresis》2018,39(12):1466-1473
Massively parallel sequencing (MPS) technologies, also termed as next‐generation sequencing (NGS), are becoming increasingly popular in study of short tandem repeats (STR). However, current library preparation methods are usually based on ligation or two‐round PCR that requires more steps, making it time‐consuming (about 2 days), laborious and expensive. In this study, a 16‐plex STR typing system was designed with fusion primer strategy based on the Ion Torrent S5 XL platform which could effectively resolve the above challenges for forensic DNA database‐type samples (bloodstains, saliva stains, etc.). The efficiency of this system was tested in 253 Han Chinese participants. The libraries were prepared without DNA isolation and adapter ligation, and the whole process only required approximately 5 h. The proportion of thoroughly genotyped samples in which all the 16 loci were successfully genotyped was 86% (220/256). Of the samples, 99.7% showed 100% concordance between NGS‐based STR typing and capillary electrophoresis (CE)‐based STR typing. The inconsistency might have been caused by off‐ladder alleles and mutations in primer binding sites. Overall, this panel enabled the large‐scale genotyping of the DNA samples with controlled quality and quantity because it is a simple, operation‐friendly process flow that saves labor, time and costs.  相似文献   

10.
Massively parallel sequencing of forensic STRs simultaneously provides length-based genotypes and core repeat sequences as well as flanking sequence variations. Here, we report primer sequences and concentrations of a next-generation sequencing (NGS)-based in-house panel covering 28 autosomal STR loci (CSF1PO, D1GATA113, D1S1627, D1S1656, D1S1677, D2S441, D2S1776, D3S3053, D5S818, D6S474, D6S1017, D6S1043, D8S1179, D9S2157, D10S1435, D11S4463, D13S317, D14S1434, D16S539, D18S51, D18S853, D20S482, D20S1082, D22S1045, FGA, TH01, TPOX, and vWA) and the sex determinant locus Amelogenin. Preliminary evaluation experiments showed that the panel yielded intralocus- and interlocus-balanced sequencing data with a sensitivity as low as 62.5 pg input DNA. A total of 203 individuals from Yunnan Bai population were sequenced with this panel. Comparative forensic genetic analyses showed that sequence-based matching probability of this 29-plex panel reached 2.37 × 10−29, which was 23 times lower than the length-based data. Compound stutter sequences of eight STRs were compared with parental alleles. For seven loci, repeat motif insertions or deletions occurred in the longest uninterrupted repeat sequences (LUS). However, LUS and non-LUS stutters co-existed in the locus D6S474 with different sequencing depth ratios. These results supplemented our current knowledge of forensic STR stutters, and provided a sound basis for DNA mixture deconvolution.  相似文献   

11.
It is widely recognized that microhaps are powerful markers for different forensic purposes, mainly due to their advantages of both short tandem repeats and single nucleotide polymorphisms, including multiple alleles, low mutation rate, and absence of stutter peaks. In the present study, a panel of 60 microhap loci was developed and utilized in forensic kinship analysis as a preliminary study. Genotyping of microhap was performed by massively parallel sequencing and haplotypes were directly achieved from sequence reads of 73 samples from Chinese Han population. We observed that 49 out of 60 loci have effective number of alleles greater than 3.0 and 10 out of 60 have values above 4.0, with an average value of 3.5598. The heterozygosity values were in a range from 0.5840 to 0.8546 with an average of 0.7268 and the cumulative power of exclusion value of the 60 loci is equal to 1–4.78 × 10−18. Moreover, we demonstrated the applicability of this method by different relationship inference problems, including identification of single parent-offspring, full-sibling, and second-degree relative. The results indicated that the assembled microhap panel provided more power for relationship inference, than commonly used short tandem repeats or single nucleotide polymorphism system.  相似文献   

12.
Five polymerase chain reaction (PCR) products which could not be reliably typed by allele-specific oligonucleotide (ASO) probing at the human leukocyte antigen (HLA) DQA1 locus were analyzed by polyacrylamide gel electrophoresis and direct sequencing. The first method revealed the preferential amplification of only one of the two alleles in two cases. Direct sequencing of PCR products allowed unambiguous genetic typing but a high number of artifacts was observed. Several of these artifacts occurred in the sequences recognized by the ASOs. This finding provides an explanation for the mistyping in the ASO probing procedure because Taq polymerase errors both created new genetic specificities and eliminated site-specific polymorphisms. Reversed-phase HPLC-MS of the five forensic templates showed a high degree of DNA damage. These data together indicate that the risk of mistyping when using the ASO probing procedure cannot be neglected in the forensic analysis of damaged DNA samples.  相似文献   

13.
The single-strand conformation polymorphism (SSCP), accompanied by sequencing, is a useful methods for identifying mutations in a DNA fragment. In this study, we have developed a modified SSCP with the aid of sodium bisulfite treatment. The corresponding PCR products for exon 3 of Hb gene were sequenced and samples with homozygote and heterozygote single nucleotide substitutions were identified. The PCR products were treated with sodium bisulfite, which deaminates all the cytosine residues. The reaction mixture was then analyzed on non-denaturing polyacrylamide gels. The modified method, which is called deaminated SSCP (DSSCP), was applied successfully in analysis of mutations in the beta-globin gene at positions relevant to codon 6. DSSCP is a very effective and reproducible method providing clear results that are easy to interpret without the involvement of radioactivity.  相似文献   

14.
SSCP is a widespread method for mutation detection in biomedical research. Yet, its potential as a tool for population genetics is still not fully utilized. Based on mitochondrial DNA sequences of 96 specimens of the wood-boring beetle Pityogenes chalcographus we constructed a phylogenetic tree of European populations. This tree consisted of six broadly sympatric diverged lineages containing in total 34 haplotypes. Genetic regions of high mutational activity were determined and used for targeted SSCP primer development. In an SSCP mass screening of 427 individuals more than 80% could be assigned to a distinct clade, revealing the insect's genetic structure in Europe. It was demonstrated that analysis of known sequences allows the setup of a functional SSCP protocol within less than two weeks of working time and that phylogenetic data may be retrieved with high accuracy and significantly reduced costs compared to direct sequencing of PCR products.  相似文献   

15.
Tsai LC  Wu KL  Hsieh HM  Chien MH  Linacre A  Lee JC 《Electrophoresis》2001,22(6):1090-1094
A novel nomenclature for the hypervariable microsatellite DNA, APOAI1 locus, is proposed. The complex nature of the repeat unit in this locus results in alleles separated by a single base. Polymerase chain reaction (PCR) products amplified from this locus were separated by single-strand conformation polymorphism (SSCP) electrophoresis. All the single-stranded DNA bands on the SSCP gel were removed from the gel and a second amplification performed. Homozygous DNA fragments amplified from single-stranded DNA were sequenced. From the 100 individuals studied, 30 alleles and 73 genotypes were found. A system of nomenclature for the APOAI1 locus is provided that is logical and in line with previous models. Using the primers described, the locus can be amplified and alleles designated on the basis of size. This system of nomenclature will assist in the exchange of data between laboratories for this locus.  相似文献   

16.
This study evaluated the applicability of microchip electrophoresis to the sizing of microsatellites suitable to genetic, clinical and forensic applications. The evaluation was performed with the D19S394 tetranucleotide (AAAG) repeat characterized by a wide variation in the repeat number (1-17) and a short recombination distance from the low-density lipoprotein (LDL)-receptor gene that makes it suitable to cosegregation analysis of familial hypercholesterolemia (FH). The study was performed with 70 carriers of two LDL-receptor mutations common in northern Italy (i.e., the 4 bp insertion in exon 10 known as FH-Savona and the D200G missense mutation in the exon 4, known as FH-Padova 1) and 100 healthy controls. The polymerase chain reaction (PCR) amplification products prepared with a cosolvent PCR protocol and an antibody-protected polymerase were directly analyzed with an apparatus for high-voltage capillary electrophoresis on microchips and laser-induced fluorescence detection equipped with chips for the analysis of 25-500 bp dsDNA fragments. The test could not be extended to dinucleotide repeats due to the resolution characteristics of the available microchip. This novel approach was able to distinguish 17 microsatellite alleles varying from 0 to 17 repeats. Many of these alleles were quite rare, but the seven more abundant accounted for over the 70% of allele distribution in control population. The standard deviation in the sizing of the most abundant alleles ranged from +0.60 to +/- 0.75 bp. This indicated that the size attribution to a conventional allele using the +/- 1 bp range around it allowed a confidence limit above the 80 %. The sizing of D19S394 obtained this way allowed the cosegregation analysis with both the FH mutations tested. Therefore, this innovative approach to microsatellite sizing was much simpler, but equally effective as traditional capillary electrophoresis, at least with tetranucleotide repeats.  相似文献   

17.
Introduction Singlenucleotidepolymorphisms(SNPs)arethe mostabundantDNAmarkersinthehumangenomeoc curringatafrequencyofoneinevery500—1000nu cleotides[1].Avarietyofmethodshavebeenusedfor theanalysisofsinglenucleotidepolymorphisms,inclu dingrestrictionfragme…  相似文献   

18.
We have developed a fast single-strand conformation polymorphism (SSCP) technique to screen for mutations and polymorphisms in exons 5-8 of the human tumor suppressor gene p53. We use multiplex polymerase chain reaction (PCR) to amplify the four exons in one single PCR reaction and then fluorescent SSCP for screening. p53 fragments are labeled with three different colors and a fourth color is used for an internal size marker calibrating the gel. The method was evaluated in two ways: (i) 16 different cell lines with known mutations were tested blindly for band-shifts with SSCP, and (ii) 32 human urinary bladder cancer samples were screened for mutations using the present technique. After screening for mutations all exons from all samples were sequenced, both sense as well as antisense strands. Evaluating the method with four different gels shows that 21/23 mutations and polymorphism were detected in the cell lines and that 10/10 mutations and polymorphisms were detected in the patient samples. Sensitivity, specificity, positive and negative predictive values were 91/100%, 88/ 97%. 78/77% and 96/100% for cell lines / patient samples, respectively. Sensitivity, using one SSCP gel only, was 87% (20/23) for cell lines and 90% (9/10) for patient samples. We conclude that our modified SSCP technique is efficient and has a sensitivity close to 100% in detecting mutations.  相似文献   

19.
X‐chromosomal short tandem repeats (X‐STRs) have been proved to be useful for some deficiency paternity cases in recent years. Here, we studied the genetic polymorphisms of 19 X‐STR loci (DXS10148‐DXS10135‐DXS8378, DXS10159‐DXS10162‐DXS10164, DXS7132‐DXS10079‐DXS10074‐DXS10075, DXS6809‐DXS6789, DXS7424‐DXS101, DXS10103‐HPRTB‐DXS10101 and DXS7423‐DXS10134) in 252 male and 222 female individuals from Guanzhong Han population, China. No deviation for all 19 loci was observed from the Hardy–Weinberg equilibrium. The polymorphism information content values of the panel of 19 loci were more than 0.5 with the exception of the locus DXS7423. The combined power of discrimination were 0.9999999999999999999994340 in females and 0.9999999999997662 in males, respectively; and the combined mean exclusion chances were 0.999999993764 in duos and 0.999999999997444 in trios, respectively. The haplotype diversities for all the seven clusters of linked loci were more than 0.9. The results showed that the panel of 19 X‐STR loci were powerful for forensic applications in Guanzhong Han population. Locus by locus population comparisons showed significant differences at more than seven loci between Guanzhong Han population and the groups from North America, Europe and Africa.  相似文献   

20.
Wong LJ  Chen TJ  Tan DJ 《Electrophoresis》2004,25(15):2602-2610
Mitochondrial disorders are a group of clinically and genetically heterogeneous diseases. Common recurrent mitochondrial DNA (mtDNA) point mutations account for the molecular defects of a small proportion of patients. In order to identify mtDNA mutations, comprehensive mutational analysis of the entire mitochondrial genome is necessary. We developed the temporal temperature gradient gel electrophoresis (TTGE) method to screen for mutations in mtDNA. The entire mitochondrial genome was amplified using 32 pairs of overlapping primers followed by TTGE analysis of the DNA fragments. TTGE method was first validated on 200 DNA fragments containing known mutations or polymorphisms. On TTGE, homoplasmic nucleotide substitutions show a single band shift and heteroplasmic mutations show multiple banding patterns. The known mutations or polymorphisms were correctly identified. TTGE was then used to screen for unknown mutations in the mitochondrial genome. DNA banding patterns, deviated from wild-type, suggestive of either homoplasmic or heteroplasmic mutations, were followed by direct DNA sequencing to identify the mutations. Numerous mutations and polymorphisms were detected. The results demonstrated that TTGE detects and distinguishes heteroplasmic mutations from homoplasmic polymorphisms. It also detects heteroplasmic changes in the background of a homoplasmic polymorphism. Overall, TTGE was proven to be a simple, rapid, sensitive, and effective mutation detection method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号