首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an endoreversible Carnot heat engine with irreversible heat transfer processes is analyzed based on generalized heat transfer law. The applicability of the entropy generation minimization, exergy analyses method, and entransy theory to the analyses is discussed. Three numerical cases are presented. It is shown that the results obtained from the entransy theory are different from those from the entropy generation minimization, which is equivalent to the exergy analyses method. For the first case in which the application preconditions of the entropy generation minimization and entransy loss maximization are satisfied, both smaller entropy generation rate and larger entransy loss rate lead to larger output power. For the second and third cases in which the preconditions are not satisfied, the entropy generation minimization does not lead to the maximum output power, while larger entransy loss rate still leads to larger output power in the third case. For the discussed cases, the concept of entransy dissipation is not applicable for the analyses of output power.The problems in the negative comments on the entransy theory are pointed out and discussed. The related researchers are advised to focus on some new specific application cases to show if the entransy theory is the same as some other theories.  相似文献   

2.
吴艳秋  蔡黎  吴鸿娟 《中国物理 B》2016,25(6):60507-060507
In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) and heat flow rate Q~(out) which is released into the room as the optimization objectives,we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations.Five numerical cases are presented.Combining the numerical results and theoretical analyses,we can conclude that the optimization applicabilities of the two theories are conditional.If Q~(out) is the optimization objective,larger entransy increase rate always leads to larger Q~(out),while smaller entropy generation rate does not.If we take COP as the optimization objective,neither the entropy generation minimization nor the concept of entransy increase is always applicable.Furthermore,we find that the concept of entransy dissipation is not applicable for the discussed cases.  相似文献   

3.
Covariance NMR is demonstrated for homonuclear 2D NMR data collected using the hypercomplex and TPPI methods. Absorption mode 2D spectra are obtained by application of the square-root operation to the covariance matrices. The resulting spectra closely resemble the 2D Fourier transformation spectra, except that they are fully symmetric with the spectral resolution along both dimensions determined by the favorable resolution achievable along omega2. An efficient method is introduced for the calculation of the square root of the covariance spectrum by applying a singular value decomposition (SVD) directly to the mixed time-frequency domain data matrix. Applications are shown for 2D NOESY and 2QF-COSY data sets and computational benchmarks are given for data matrix dimensions typically encountered in practice. The SVD implementation makes covariance NMR amenable to routine applications.  相似文献   

4.
In this paper, two new similarity measure methods based on set theory were proposed. Firstly, similarity measure of two sets based on set theory and set operation was discussed. This principle was used to spectral vectors, and two approaches were proposed. The first method was to create a spectral polygon corresponding to spectral curve, and similarity of two spectral vectors can be replaced by that of two polygons. Area of spectral polygon was used as quantification function and some effective indexes for similarity and dissimilarity were computed. The second method was to transform the original spectral vector to encoding vector according to absorption or reflectance feature bands, and similarity measure was conducted to encoding vectors. It proved that the spectral polygon-based approach was effective 'and can be used to hyperspectral RS image retrieval.  相似文献   

5.
In this paper a new time-domain frequency-selective quantification algorithm is presented. Frequency-selective quantification refers to a method that analyzes spectral components in a selected frequency region, ignoring all the other components outside. The algorithm, referred to as MeFreS (Metropolis Frequency-Selective), is based on rank minimization of an opportune Hankel matrix. The minimization procedure is satisfied by the down-hill simplex method, implemented with the simulated annealing method. MeFreS does not use any preprocessing step or filter to suppress nuisance peaks, but the signal model function is directly fitted. In this manner, neither inherent signal distortions nor estimation biases to be corrected occur. The algorithm was tested with Monte Carlo simulations. A comparison with VARPRO and AMARESw algorithms was carried out. Finally, two samples of known content from NMR data were quantified.  相似文献   

6.
为了充分利用高光谱图像蕴含的丰富的光谱信息和空间信息,提出了结合多尺度空间滤波和层级网络的基于结构保持的高光谱特征选择算法.算法利用基于l2,1范数的数学模型,选出同时保存全局相似性结构和局部流形结构的特征子集;在多个尺度的窗口中使用双边滤波,自适应计算滤波核,自动在光谱数据中融入空间信息,增强了类内相似性和类间相异性,避免了参量选择;引入层级结构实现空间信息和光谱信息的深入融合,提高了分类准确度;讨论了层级数目和窗口尺度个数对分类准确度的影响.在Indian Pines和PaviaU两个数据集的实验表明,该算法在大部分地物种类上的分类准确度都有较大幅度的提升,总体分类准确度分别达到90.98%和94.20%,相比其他方法明显提高了地物分类准确度.  相似文献   

7.
A methodology of multivariate chemometric techniques based on the information‐theoretic approach was applied for elucidating chemical reaction information from a Raman data array R m×ν that arises from in situ reaction monitoring. This reaction‐induced dynamic dataset R m×ν can be contaminated by random cosmic ray spikes found in the midst of characteristic spectral variations associated with the disappearance or emergence of Raman active reactants, intermediates and products. Such spurious cosmic spikes were identified and removed using a novel and fast numerical approach based on maximum and minimum spectral entropy principles while preserving the genuine reaction‐induced spectral variations. Subsequently, the band‐target entropy minimization (BTEM) algorithm, a minimum spectral entropy based self‐modeling curve resolution technique, was applied to recover the pure component spectra of Raman active chemical species. Information gain through the chemometric analyses was calculated using information entropies with base 2 logarithm. This sequence of information‐theoretic chemometric analyses (or transinformations) was successfully tested on the reaction spectral data obtained from alcoholysis of acetic anhydride, which contains four Raman active chemical species. It is envisioned that this series of multivariate statistical analyses will be useful in chemical reaction studies and process analytical technology (PAT) applications that utilize in situ Raman spectroscopy to monitor transient dynamic changes in chemical concentrations, and also in Raman microscopy/imaging data containing spatial variations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
9.
To reliably measure NMR relaxation properties of macromolecules is a prerequisite for precise experiments that identify subtle variations in relaxation rates, as required for the determination of rotational diffusion anisotropy, CSA tensor determination, advanced motional modeling or entropy difference estimations. An underlying problem with current NMR relaxation measurement protocols is maintaining constant sample temperature throughout the execution of the relaxation series especially when rapid data acquisition is required. Here, it is proposed to use a combination of a heating compensation and a proton saturation sequence at the beginning of the NMR relaxation pulse scheme. This simple extension allows reproducible, robust and rapid acquisition of NMR spin relaxation data sets. The method is verified with (15)N spin relaxation measurements for human ubiquitin.  相似文献   

10.
Pattern recognition techniques are effective tools for reducing the information contained in large spectral data sets to a much smaller number of significant features which can then be used to make interpretations about the chemical or biochemical system under study. Often the effectiveness of such approaches is impeded by experimental and instrument induced variations in the position, phase, and line width of the spectral peaks. Although characterizing the cause and magnitude of these fluctuations could be important in its own right (pH-induced NMR chemical shift changes, for example) in general they obscure the process of pattern discovery. One major area of application is the use of large databases of (1)H NMR spectra of biofluids such as urine for investigating perturbations in metabolic profiles caused by drugs or disease, a process now termed metabonomics. Frequency shifts of individual peaks are the dominant source of such unwanted variations in this type of data. In this paper, an automatic procedure for aligning the individual peaks in the data set is described and evaluated. The proposed method will be vital for the efficient and automatic analysis of large metabonomic data sets and should also be applicable to other types of data.  相似文献   

11.
Given the algebra of observables of a quantum system subject to selection rules, a state can be represented by different density matrices. As a result, different von Neumann entropies can be associated with the same state. Motivated by a minimality property of the von Neumann entropy of a density matrix with respect to its possible decompositions into pure states, we give a purely algebraic definition of entropy for states of an algebra of observables, thus solving the above ambiguity. The entropy so-defined satisfies all the desirable thermodynamic properties and reduces to the von Neumann entropy in the quantum mechanical case. Moreover, it can be shown to be equal to the von Neumann entropy of the unique representative density matrix belonging to the operator algebra of a multiplicity-free Hilbert-space representation.  相似文献   

12.
 For deuteron photo- and electrodisintegration the selection of complete sets of polarization observables is discussed in detail by applying a recently developed new criterion for the check of completeness of a chosen set of observables. The question of ambiguities and their resolution by considering additional observables is discussed for a numerical example, for which the role of experimental uncertainties is also investigated. Furthermore, by inversion of the expressions of the observables as Hermitean forms in the t-matrix elements a bilinear term of the form can be given as a complex linear form in the observables from which an explicit solution for in terms of observables can be obtained. These can also be used to select sets of observables for the explicit representation of the t-matrix. Received May 15, 1999; accepted for publication August 30, 1999  相似文献   

13.
Residual dipolar couplings (RDC) provide important global restraints for accurate structure determination by NMR. We show that nonuniform sampling in combination with maximum entropy reconstruction (MaxEnt) is a promising strategy for accelerating and potentially enhancing the acquisition of RDC spectra. Using MaxEnt-processed spectra of nonuniformly sampled data sets that are reduced up to one fifth relative to uniform sampling, accurate 13C'-13Calpha RDCs can be obtained that agree with an RMS of 0.67 Hz with those derived from uniformly sampled, Fourier transformed spectra. While confirming that frequency errors in MaxEnt spectra are very slight, an unexpected class of systematic errors was found to occur in the 6th significant figure of 13C' chemical shifts of doublets obtained by MaxEnt reconstruction. We show that this error stems from slight line shape perturbations and predict it should be encountered in other nonlinear spectral estimation algorithms. In the case of MaxEnt reconstruction, the error can easily be rendered systematic by straightforward optimization of MaxEnt reconstruction parameters and self-cancels in obtaining RDCs from nonuniformly sampled, MaxEnt reconstructed spectra.  相似文献   

14.
Completely positive mappings on algebras of unbounded observables are investigated. The main theorem of Stinespring on the structure of completely positive mappings is generalized to algebras of unbounded observables. It is shown that the consideration of unbounded observables leads to a natural physical topology on the state space, with respect to which the entropy is continuous.  相似文献   

15.
导热优化中的最小传递势容耗散与最小熵产   总被引:5,自引:1,他引:4  
为了比较分析强化传热中存在的熵产最小化和传递势容耗散最小化两种不同的方法,针对体点问题,根据这两种方法对导热系数分布进行了优化。数值计算和理论分析的结果表明,根据最小传递势容耗散原理得到的结果优于最小熵产原理得到的结果。其原因在于传递势容耗散最小的优化目标是提高热量传递效率,而熵产最小的优化目标实际上是减少可用能损失。  相似文献   

16.
Band‐target entropy minimization (BTEM) was applied for the extraction of pure component Raman spectra from samples exhibiting a significant thermal background due to sample emission. In this method, singular value decomposition was first used to calculate the right singular vectors of the spectroscopic data matrix. Then the non‐noise right singular vectors were examined for localized spectral features, which were subsequently used for spectral recovery. These local features were targeted with the BTEM algorithm to recover the pure component Raman spectra. Accordingly, the interfering thermal background was removed. This method of analysis is applied to graphite and barium sulfate Raman spectroscopic data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first.  相似文献   

18.
Quantum physics, despite its intrinsically probabilistic nature, lacks a definition of entropy fully accounting for the randomness of a quantum state. For example, von Neumann entropy quantifies only the incomplete specification of a quantum state and does not quantify the probabilistic distribution of its observables; it trivially vanishes for pure quantum states. We propose a quantum entropy that quantifies the randomness of a pure quantum state via a conjugate pair of observables/operators forming the quantum phase space. The entropy is dimensionless, it is a relativistic scalar, it is invariant under canonical transformations and under CPT transformations, and its minimum has been established by the entropic uncertainty principle. We expand the entropy to also include mixed states. We show that the entropy is monotonically increasing during a time evolution of coherent states under a Dirac Hamiltonian. However, in a mathematical scenario, when two fermions come closer to each other, each evolving as a coherent state, the total system’s entropy oscillates due to the increasing spatial entanglement. We hypothesize an entropy law governing physical systems whereby the entropy of a closed system never decreases, implying a time arrow for particle physics. We then explore the possibility that as the oscillations of the entropy must by the law be barred in quantum physics, potential entropy oscillations trigger annihilation and creation of particles.  相似文献   

19.
舌苔舌质信息定量描述作为中医舌诊的重要内容,直接影响到中医临床舌诊的准确性。基于生物医学光子学理论,利用高光谱技术,提出一种基于双波长比值光谱差异度指数进行人体舌质舌苔分离的光谱分析新方法。首先采集被测对象371.200~992.956 nm之间共343个波长的舌体高光谱信息,随机选取15位被测对象进行光谱特征分析。绘制15位被测对象舌质舌苔全波段光谱曲线并进行比较,通过观察发现,舌质舌苔反射光特征差异与血红蛋白在该波段的光学特征变化相吻合,在500~750 nm之间,水对光的吸收很少,而舌体表面布满血管,光的吸收主要受到血红蛋白的影响,基于舌质舌苔在573和700 nm两波段光谱吸收差异,计算双波长比值,提取舌质舌苔光谱特征差异度指数,根据个体差异,分别提取不同被测对象舌质舌苔光谱特征差异指标,进行舌质舌苔区域分离,实验结果发现,对同一被测对象舌体苔质提取光谱差异度指数SDI,舌苔舌质光谱差异度指数存在一定差异性,由于个体的不同,具有各自明显的舌质、舌体差异度指数分割线,实验结果表明,运用双波长比值光谱差异度指数的光学表达形式能够用于舌质舌苔分离,同时该方法也能够为进一步中医临床舌诊提供客观依据。  相似文献   

20.
A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the spectrum in terms of phase-sensitive Lorentzian "phase-twist" peaks. These spectra are then used to obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimensional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections in each frequency dimension are possible, if they are required. Regularization is employed to improve the conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the first time, but is applicable to n-dimensional data without any restriction on the number of time/frequency dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号