首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
本文研究了一类具有变时滞Hopfield神经网络的稳定性问题.利用时滞微分不等式方法,获得了几个关于该网络的全局指数稳定性与时滞无关的充分条件,并且给出了此类网络的收敛指数的估计,推广了已知文献的结果.最后给出数值例子证明结论的有效性.  相似文献   

2.
研究了一类新的具有脉冲的时滞Hopfield神经网络系统模型,引入了新的脉冲条件,在不假设激励函数的可微性、单调性的条件下,得到了系统平衡点的存在性、唯一性及全局指数稳定性的充分条件和指数收敛速率,且所得结果改进了一些已知文献的结论.  相似文献   

3.
时滞Hopfield神经网络的全局指数稳定性   总被引:13,自引:0,他引:13       下载免费PDF全文
利用时滞微分不等式,讨论了时滞Hopfield神经网络的全局指数稳定性,获得了几个判定条件。这些结论推广了已知文献中的结果。  相似文献   

4.
利用拓扑度理论中的连续性引理和推广Halanay不等式研究了变时滞的细胞神经网络的周期解的存在性及全局指数稳定性.给出了判别周期解及指数稳定性的代数判据,所得判据易于检验,具有广泛的实用性.同时,改进了已有文献的相关结论,最后通过数值例子说明结论的有效性.  相似文献   

5.
夏文华 《大学数学》2006,22(6):33-37
对一类具时滞的Hopfeild型神经网络模型,在非线性神经元激励函数只要求满足Lipschitz连续的条件下,利用推广的Halanay时延微分析不等式、Dini导数以及泛函微分析技术,给出了这类模型的平衡点全局指数稳定性和全局吸引性的充分条件,这些条件易于检验,且改进和推广了前人的结论.此外,此文给出了研究神经网络模型的全局吸引性的微分不等式比较方法.  相似文献   

6.
一类变时滞神经网络的全局指数稳定性   总被引:1,自引:0,他引:1  
张丽娟  斯力更 《应用数学》2007,20(2):258-262
本文研究一类变时滞神经网络平衡点的全局指数稳定性.在不要求激活函数全局Lipschitz条件下,利用Lyapunov函数方法,并结合Young不等式和Halanay时滞微分不等式,得到了系统全局指数稳定的充分条件.文末,一个数值例子用以说明本文结果的有效性.  相似文献   

7.
研究了一类含脉冲的Hopfield神经网络的全局指数稳定性.利用同胚映射理论、Lyapunov函数思想和不等式技巧,给出了平衡点的存在唯一性和全局指数稳定性的新的判别准则.  相似文献   

8.
研究变系数具有连续分布时滞的Hopfield神经网络系统Ci(t)dxi/dt=-xi(t)/Ri(t) ∑j=1^nWij(t)fj[∫o^∞kj(s)xj(t-s)ds ] Ii(t)的全局渐近稳定性,获得了一个充分条件。  相似文献   

9.
时滞型脉冲神经网络的全局指数稳定性   总被引:1,自引:0,他引:1  
对一类含时滞的脉冲神经网络平衡点的存在性和稳定性进行了研究.在不假定激励函数有界、单调或可微而仅假定激励函数Lipschitz连续的条件下,利用压缩映像原理证明了系统平衡点的存在性,利用右上Dini导数的性质并通过构造适当的gyapunov函数得到了平衡点全局指数稳定的充分条件.文末通过实例说明了所获结论的有效性.  相似文献   

10.
研究一类变时滞BAM神经网络平衡点的全局指数稳定性问题.在不要求激励函数全局Lipschitz条件下,通过构造合适的Lyapunov泛函,并结合Young不等式,得到了BAM神经网络模型在一定条件下全局指数稳定的一些充分条件,推广和改进了前人的相关结论,为综合设计指数稳定的时滞BAM神经网络提供了依据.  相似文献   

11.
In this paper, dynamical behaviors of Hopfield neural networks system with distributed delays were studied. By using contraction mapping principle and differential inequality technique, a sufficient condition was obtained to ensure the existence uniqueness and global exponential stability of the equilibrium point for the model. Here we point out that our methods, which are different from previous known results, base on the contraction mapping principle and inequality technique. Two remarks were also worked out to demonstrate the advantage of our results.  相似文献   

12.
This paper studies the problem of global exponential stability and exponential convergence rate for a class of impulsive discrete-time neural networks with time-varying delays. Firstly, by means of the Lyapunov stability theory, some inequality analysis techniques and a discrete-time Halanay-type inequality technique, sufficient conditions for ensuring global exponential stability of discrete-time neural networks are derived, and the estimated exponential convergence rate is provided as well. The obtained results are then applied to derive global exponential stability criteria and exponential convergence rate of impulsive discrete-time neural networks with time-varying delays. Finally, numerical examples are provided to illustrate the effectiveness and usefulness of the obtained criteria.  相似文献   

13.
This paper is concerned with the stability of neural networks with time-varying delays. Under assumption that the nonlinear stimulate functions are Lipschitz continuous, by means of generalized Halanay inequalities, Dini's derivative and functional analysis techniques, several globally exponential stability criteria are established, which are only dependent on the parameters of the system.  相似文献   

14.
In this paper, by means of constructing the extended impulsive delayed Halanay inequality and by Lyapunov functional methods, we analyze the global exponential stability and global attractivity of impulsive Hopfield neural networks with time delays. Some new sufficient conditions ensuring exponential stability of the unique equilibrium point of impulsive Hopfield neural networks with time delays are obtained. Those conditions are more feasible than that given in the earlier references to some extent. Some numerical examples are also discussed in this work to illustrate the advantage of the results we obtained.  相似文献   

15.
In this paper, an approach based on H-matrix theory and Halanay inequality is developed to present a sufficient condition for global robust exponential stability of interval neural networks with time-varying delays. Theoretic analysis shows that our result includes a previous result derived in the literature. Finally, some numerical examples are given to show the effectiveness of the obtained results.  相似文献   

16.
A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.  相似文献   

17.
This paper deals with the problem of global exponential stability for bidirectional associate memory (BAM) neural networks with time-varying delays and reaction-diffusion terms. By using some inequality techniques, graph theory as well as Lyapunov stability theory, a systematic method of constructing a global Lyapunov function for BAM neural networks with time-varying delays and reaction-diffusion terms is provided. Furthermore, two different kinds of sufficient principles are derived to guarantee the exponential stability of BAM neural networks. Finally, a numerical example is carried out to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

18.
Robust stability for stochastic Hopfield neural networks with time delays   总被引:6,自引:0,他引:6  
In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-bounded that enter into all the network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov–Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be checked readily by using some standard numerical packages, and no tuning of parameters is required. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号