首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last decade, time-of-flight (TOF) instruments have increasingly been used as quantitation tools. In addition, because of their high resolving power, they can be used for verification of empirical formulas. Historically, TOF instruments have had limited quantitation capabilities because of their narrow dynamic range. However, recent advances have improved these limitations. This review covers the rationale for using TOF for LC detection, and describes the many methods currently in the literature for the quantitation of pharmaceuticals, environmental pollutants, explosives and many phytochemicals.  相似文献   

2.
A liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry (LC-ESI-TOF-MS) method has been developed to evaluate the quality of three formulas of compound Danshen preparations (CDPs), through a simultaneous determination of 22 marker constituents (nine major phenolic acids, eight major saponins and five major diterpenoids). Optimum separations were obtained with a Zorbax C(18) column, using a gradient elution with 0.1% aqueous formic acid and acetonitrile. Limits of detection and quantification were in ranges of 1.58-10.10 and 4.85-28.56 ng/mL. All calibration curves showed good linear regression (r(2 ) > 0.9900) within the test range, and the recoveries were between 78.4 and 103.1% for all analytes. The assay was successfully utilized to analyze the 22 marker components in 26 samples. The overall results demonstrated that this method is sensitive, accurate and reliable for the quality control of CDPs.  相似文献   

3.
A sensitive method for the quantitative analysis of all natural isoprenoid cytokinins in plant material by electrospray single-quadrupole mass spectrometry is presented. A baseline chromatographic separation of 20 non-derivatised naturally occurring cytokinins has been developed. Precise analyses of O-glucoside and ribonucleotide fractions were also performed by the high-performance liquid chromatography–mass spectrometry (HPLC–MS) but run separately from the basic cytokinin metabolites. Using post-column splitting, the flux from narrow-bore (2.1 mm i.d.) reversed-phase liquid chromatography column was simultaneously introduced into the diode array and mass detector. Optimal conditions, including final flow rate, desolvation temperature, desolvation gas flow, capillary and cone voltage for effective ionisation in the electrospray ion source were found. When low cone voltage (20 V) was applied, all studied cytokinins were determined in aqueous methanol as dominant quasi-molecular ions of [M+H]+ with limits of detection ranging between 10 and 50 fmol. For routine analysis a linearity range between 25 (75) fmol and 100 pmol was obtained. Developed liquid chromatography–mass spectrometry (LC–MS) method in selective ion monitoring mode was employed to quantify cytokinin species in tobacco BY-2 suspension culture and poplar leaves (Populus×canadensis Moench, cv Robusta).

Purified plant cell (BY-2) and plant tissue (poplar leaves) extracts were obtained by using two different ion-exchange chromatography steps, in combination with immunoaffinity purification using a broad-spectrum monoclonal anti-cytokinin antibody. The antibody strongly recognises the presence of N6-substituent on purine skeleton and thus does not bind adenine and related compounds. The presence of authentic cytokinins in the extracts quantified by LC–MS was further verified by enzyme-linked immunosorbent assays (ELISAs) with prior LC preparation. The combination of liquid chromatography–single-quadrupole mass spectrometry with immunoaffinity chromatography offers an efficient and elegant method for detection and quantification of cytokinin metabolites.  相似文献   


4.
This paper gives an overview of the potentials of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QqTOF) in the environmental analysis. Examples of applications of QqTOF instruments for target analysis of pharmaceuticals and pesticides are presented and discussed, as well as applications aimed on the identification of unknown compounds present in environmental waters or on the elucidation of structures of biodegradation and photodegradation products. Specific issues such as uncertainty of mass measurement and quantitative performances are discussed in details.  相似文献   

5.
Identifying unknown proteins has become a central focal point for proteomic and biopharmaceutical development laboratories. Our laboratory investigated using quadrupole time-of-flight mass spectrometry (Qq/TOFMS) for the analysis of intact proteins for the purpose of identifying unknowns while limiting the number of sample-handling steps between protein extraction and identification. Eight standard proteins, both unmodified and disulfide-bonded and ranging in mass from 5 to 66 kDa, were analyzed using nanoelectrospray and collision-induced dissociation to generate peptide sequence tags. An MS analysis, followed by MS/MS analyses on two to five individual protein charge states, were obtained to make an identification. Peptide sequence tags were extracted from the MS/MS data and used, in conjunction with molecular mass and source origin, to obtain protein identifications using the web-based search engine ProteinInfo (www.proteometrics.com). All of the proteins were unambiguously identified from the input data, after which, all of the major product ions were identified for structural information. In most cases, N- and/or C-terminal ions, and also stretches of consecutive product ions from the protein interior, were observed. This method was applied to the analysis and identification of an unknown detected via reversed-phase high-performance liquid chromatography.  相似文献   

6.
The fact that the effects of herbal medicines (HMs) are brought about by their chemical constituents has created a critical demand for powerful analytical tools performing the chemical analysis to assure their efficacy, safety and quality. Liquid chromatography coupled to mass spectrometry (LC–MS) is an excellent technique to analyze multi-components in complex herbal matrices. Due to its inherent characteristics of accurate mass measurements and high resolution, time-of-flight (TOF) MS is well-suited to this field, especially for qualitative applications. The purpose of this article is to provide an overview on the potential of TOF, including the hybrid quadrupole- and ion trap-TOF (QTOF and IT-TOF), hyphenated to LC for chemical analysis in HMs or HM-treated biological samples. The peculiarities of LC–(Q/IT)TOF-MS for the analysis of HMs are discussed first, including applied stationary phase, mobile-phase selection, accurate mass measurements, fragmentation and selectivity. The final section is devoted to describing the applicability of LC–(Q/IT)TOF-MS to routine analysis of multi-components, including target and non-target (unknown) compounds, in herbal samples, emphasizing both the advantages and limitations of this approach for qualitative and quantitative purposes. The potential and future trends of fast high-performance liquid chromatography (HPLC) (e.g. rapid resolution LC and ultra-performance LC) coupled to (Q)TOF-MS for chemical analysis of HMs are highlighted.  相似文献   

7.
In this study, Yin‐Chen‐Hao‐Tang prepared by two decoction methods, namely, combined decoction (modern decoction method) and separated decoction (traditional decoction method), was analyzed by high‐performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry. The acquired datasets containing sample codes, tRm/z pairs and ion intensities were processed with multivariate statistical analyses, such as principal component analysis and an orthogonal partial least squared discriminant analysis model, to globally compare the chemical differences between the different decoction samples. Then, the chemical differences between the combined and separated decoctions were screened out by S‐plots generated from the orthogonal partial least squared discriminant analysis model and compared with chemical information from an established in‐house library. The six components that contributed the most to the chemical differences were identified as chlorogenic acid, caffeic acid, geniposide, genipin, scopoletin, and 3,5‐dicaffeoylquinic acid. The concentrations of genipin and caffeic acid from the separated decoction were higher than those from the combined decoction, indicating that the separated decoction may present a stronger hepatoprotective effect. However, the results still require further investigation through pharmacological and clinical studies. Our findings not only establish a strategy to evaluate chemical consistency of Yin‐Chen‐Hao‐Tang but also provide the scientific basis for using traditional separated decoction method.  相似文献   

8.
9.
Liquid chromatography (LC) with high-resolution mass spectrometry (HRMS) represents a powerful technique for the identification and/or confirmation of small molecules, i.e. drugs, metabolites or contaminants, in different matrices. However, reliability of analyte identification by HRMS is being challenged by the uncertainty that affects the exact mass measurement. This parameter, characterized by accuracy and precision, is influenced by sample matrix and interferent compounds so that questions about how to develop and validate reliable LC-HRMS-based methods are being raised. Experimental approaches for studying the effects of various key factors influencing mass accuracy on low-molecular weight compounds (MW < 150 Da) when using a quadrupole-time-of-flight (QTOF) mass analyzer were described. Biogenic amines in human plasma were considered for the purpose and the effects of peak shape, ion abundance, resolution and data processing on accurate mass measurements of the analytes were evaluated. In addition, the influence of the matrix on the uncertainty associated with their identification and quantitation is discussed. A critical evaluation on the calculation of the limits of detection was carried out, considering the uncertainty associated with exact mass measurement of HRMS-based methods. The minimum concentration level of the analytes that was able to provide a statistical error lower than 5 ppm in terms of precision was 10 times higher than those calculated with S/N = 3, thus suggesting the importance of considering both components of exact mass measurement uncertainty in the evaluation of the limit of detection.  相似文献   

10.
This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (LC‐QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data‐dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC‐QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans , but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
In-source collision-induced dissociation (CID) fragmentation features of multiclass flavonoid glycoconjugates were examined using liquid chromatography electrospray time-of-flight mass spectrometry. Systematic experiments were performed to search for optimal conditions for in-source fragmentation in both positive and negative ion modes. The objective of the study was to attain uniformly appropriate conditions for a wide range of analytes independently of the aglycone, the attached sugar part and the type of bond between the aglycone and the glycan moieties (O- or C-glycosides). Studied substances included representatives of flavonols, flavones, flavanones and anthocyanins and, regarding their glycan parts, mono-, di- and triglycosides with varying distribution of carbohydrate moieties (di-O-glycosides, O-diglycosides, O,C-diglycosides). The breakdown properties of the analytes along with the abundances of the characteristic diagnostic ions required for structural elucidation of complex flavonoid derivatives were evaluated. An optimized value was found for the instrument parameter (fragmentor voltage) affecting the in-source CID fragmentation of the analytes [230 V (ESI+) and 330 V (ESI-)]. Thus, appropriate performance in terms of both highly sensitive full-scan acquisition and fragmentation information was obtained for all the investigated flavonoids. In addition, singularities in the abundance of selected diagnostic ions (e.g. Y(0), Y(1) and Y*) due to variations in the interglycosidic linkage (rutinoside-neohesperidoside) in the glycan part were found and are also evaluated and discussed in detail. The combination of in-source CID fragmentation with high mass accuracy MS detection establishes a working basis for the development of versatile and useful LC-MS methods for wide-scope screening, non-targeted detection and tentative identification of flavonoid derivatives.  相似文献   

12.
Yang M  Sun J  Lu Z  Chen G  Guan S  Liu X  Jiang B  Ye M  Guo DA 《Journal of chromatography. A》2009,1216(11):2045-2062
Traditional Chinese medicine (TCM) is commonly considered to operate due to the synergistic effects of all the major and minor components in the medicines. Hence sensitive and comprehensive analytical techniques are needed to acquire a better understanding of the pharmacological basis of the herb and to enhance the product quality control. The present review mainly focuses on the phytochemical analysis of TCMs using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) are the two commonly used ion sources. Triple quadrupole, ion trap (IT), Fourier transform ion cyclotron resonance (FTICR) and time-of-flight (TOF) mass spectrometers are used as on-line analyzer. The relationship between structural features and fragmentation patterns should be investigated as thoroughly as possible and hence be applied in the on-line analysis to deduce the structures of detected peaks. Characteristic fragmentation behaviors of the reference standards, as well as information regarding polarity obtained from retention time data, on-line UV spectra, data from the literature and bio-sources of the compounds allowed the identification of the phytochemical constituents in the crude extracts. Although a mass spectrometer is not a universal detector, high-performance liquid chromatography coupled with multistage mass spectrometry (HPLC-MS(n)) technique was still proved to be a rapid and sensitive method to analyze the majority of the many constituents in herbal medicines, particularly for the detection of those present in minor or trace amounts. The methods established using HPLC-MS techniques facilitate the convenient and rapid quality control of traditional medicines and their pharmaceutical preparations. However, the quantitative analysis is not the topic of this review.  相似文献   

13.
A prototype matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-TOF) tandem mass spectrometer was used to sequence a series of phosphotyrosine-, phosphothreonine- and phosphoserine-containing peptides. The high mass resolution and mass accuracy of the instrument allowed the localization of one, three or four phosphorylated amino acid residues in phosphopeptides up to 3.1 kDa. Tandem mass spectra of two different phosphotyrosine peptides permitted amino acid sequence determination and localization of one and three phosphorylation sites, respectively. The phosphotyrosine immonium ion at m/z 216.04 was observed in these MALDI low-energy CID tandem mass spectra. Elimination of phosphate groups was evident from the triphosphorylated peptide but not from the monophosphorylated species. The main fragmentation pathway for the synthetic phosphothreonine-containing peptide and for phosphoserine-containing peptides derived from beta-casein and ovalbumin was the beta-elimination of phosphoric acid with concomitant conversion of phosphoserine to dehydroalanine and phosphothreonine to 2-aminodehydrobutyric acid. Peptide fragment ions of the b- and y-type allowed, in all cases, the localization of phosphorylation sites. Ion signals corresponding to (b-17), (b-18) and (y-17) fragment ions were also observed. The abundant neutral loss of phosphoric acid (-98 Da) is useful for femtomole level detection of phosphoserine-peptides in crude peptide mixtures generated by gel in situ digestion of phosphoproteins.  相似文献   

14.
Aconitum carmichaelii is widely used to treat chronic and intractable diseases due to its remarkable curative effect, but it is also a highly toxic herb with severe cardiac and neurotoxicity. It has been combined with honey for thousands of years to reduce toxicity and enhance efficacy, but there has been no study on the chemical constituent changes in the honey-processing so far. In this study, the chemical constituents of A. carmichaelii before and after honey-processing were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. The results showed that a total of 118 compounds were identified, of which six compounds disappeared and five compounds were newly produced after honey-processing, and the cleavage pathway of main components was elucidated. At the same time, 25 compounds were found to have significant effects on different products, among which four compounds with the biggest difference were selected for quantitative analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry. This study not only explained the chemical differences between the different products, but also helped to control the quality of the honey-processed products more effectively, and laid a foundation for further elucidating the mechanism of chemical constituent change during the honey-processing of A. carmichaelii.  相似文献   

15.
Mume Fructus is an important traditional Chinese medicine that has been widely used in the treatment of intestinal diseases and asthma for thousands of years. In order to evaluate the quality of Mume Fructus in different processing methods, the main chemical components in Mume Fructus were investigated and a method was established for simultaneous quantification of organic acids of Mume Fructus. First, an optimized ultra-performance liquid chromatography-quadrupole-time of flight tandem-mass spectrometry method was used to identify the structures of main components in Mume Fructus. A total of 41 chemical compounds were identified, including 11 organic acids, 13 flavonoids, and three fatty acids. The contents of 11 organic acids in 18 batches of Mume Fructus from different processing methods were simultaneously determined by a liquid chromatography with tandem mass spectrometry method. The results of quantitative and hierarchical cluster analysis indicated that Mume Fructus under different processing methods were rich in the above 11 organic acids and the contents were obviously different. Taken together, the proposed quality evaluation method was fast and comprehensively reflects the content of the main chemical components in Mume Fructus under different processing methods, and provides a useful reference for the quality control and evaluation of Mume Fructus.  相似文献   

16.
A rapid and sensitive ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry method was developed and validated for the simultaneous determination of eight major active components (magnoflorine, menisperine, 20‐hydroxyecdysone, cepharanthine, columbamine, jatrorrhizine, columbin, and palmatine) in Radix Tinosporae. The separation was performed on an InterSustainSwift C18 column (1.9 μm, 2.1 id × 100 mm) at 40 °C with a gradient elution. A mixture of acetonitrile and methanol (v/v = 1:1) and ammonium acetate buffer (25 mmol/L ammonium acetate with 0.2% formic acid) were used as mobile phases, and the flow rate was set at 0.4 mL/min. The recovery was tested in real samples and calculated to be 86.97–111.28%, and all the compounds showed good linearity (r > 0.998) in relatively wide concentration ranges. The developed method was applied to the determination of eight active compounds in real herb samples, which were collected from four different places. It has been demonstrated that the proposed method has great potential for the quality control of the traditional Chinese medicine Radix Tinosporae.  相似文献   

17.
The potential of a gas chromatographic method employing high-resolution time-of-flight (TOF) mass spectrometry was evaluated for detection of polybrominated diphenyl ethers (PBDEs) in the environmental matrices represented by fish and river sediment. Two ionisation techniques, viz. electron ionisation (EI) and negative ion chemical ionisation (NICI), the latter with methane as a reagent gas, were used in this study. While the instrumental lowest calibration levels (LCLs) obtained in El were in the range from 1 to 5 pg, their values ranged between 10 to 250 fg in NICI mode. This enhancement in detectability of target analytes enabled identification/quantification of even minor PBDE congeners, and consequently, improved characterisation of particular sample contamination patterns. In addition, this method allowed estimation of the PCB levels in examined samples. CB 153 was used as a contamination marker in this study.  相似文献   

18.
林慧  徐春祥  颜春荣  张征  王岁楼 《色谱》2013,31(9):914-919
建立了牛肉中刚果红的检测方法。定性方法采用液相色谱-串联四极杆飞行时间质谱对未知物进行质谱谱图库匹配,定量分析采用超高效液相色谱-串联三重四极杆质谱。牛肉样品中的刚果红经液液萃取净化后,采用Agilent ZORBAX Eclipse Plus C18 Rapid Resolution HD色谱柱(50 mm×2.1 mm, 1.8 μm)进行分离,流动相为95%(体积分数)甲醇,流速为0.2 mL/min。AB 4000+三重四极杆质谱仪在电喷雾负离子化(ESI)及MRM模式下定量。结果显示,刚果红在0.03~1 mg/L浓度范围内,线性关系良好(相关系数为0.9998),精密度良好(RSD小于5%),回收率为88%~91%,检出限约为0.01 mg/L。本方法快速简便,重现性好,可以为牛肉及其他肉制品中刚果红的定量提供良好的解决方案。  相似文献   

19.
建立了大鼠灌胃麻杏石甘汤后血浆中苦杏仁苷、野黑樱苷的定性及定量方法。样品经液液萃取净化处理,定性采用超高效液相色谱-串联四极杆飞行时间质谱仪(UPLC-QTOF-MS/MS),经Shim-pack XR-ODS Ⅲ色谱柱(75 mm×2.0 mm,1.6 μm)分离,定量采用超高效液相色谱-串联三重四极杆质谱仪(UPLC-Q-TRAP-MS),经Agilent C18色谱柱(50 mm×2.1 mm,1.7 μm)分离,电喷雾负离子化(ESI)及MRM模式测定,流动相均为乙腈-0.1%(v/v)甲酸水溶液。结果显示苦杏仁苷、野黑樱苷在相应浓度范围内线性关系良好(相关系数分别为0.9990、0.9970),精密度(RSD)小于9.20%,回收率为82.33%~95.25%,检出限(LOD)约为0.50 ng/mL。本方法快速简便,为血浆样品中苦杏仁苷、野黑樱苷的定性和定量分析提供良好参考。  相似文献   

20.
Many pesticide transformation products (TPs) can reach environmental waters as a consequence of their normally having a higher polarity than their parent pesticides. This makes the development of analytical methodology for reliable identification and subsequent quantification at the sub-microgram per liter levels necessary, as required under current legislation. In this paper we report the photodegradation of several pesticides frequently detected in environmental waters from the Spanish Mediterranean region using the high-resolution and exact-mass capabilities of hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) hyphenated to liquid chromatography (LC). Once the main photodegradation/hydrolysis products formed in aqueous media were identified, analytical methodology for their simultaneous quantification and reliable identification in real water samples was developed using on-line solid-phase extraction (SPE)-LC-tandem MS with a triple-quadrupole (QqQ) analyzer. The methodology was validated in both ground and surface water samples spiked at the limit of quantification (LOQ) and 10 x LOQ levels, i.e. 50 and 500 ng/l, obtaining satisfactory recoveries and precision for all compounds. Subsequent analysis of ground and surface water samples resulted in the detection of a number of TPs higher than parent pesticides. Additionally, several soil-interstitial water samples collected from the unsaturated zone were analyzed to explore the degradation/transformation of some pesticides in the field using experimental plots equipped with lisimeters. Several TPs were found in these samples, with most of them having also been detected in ground and surface water from the same area. This paper illustrates the extraordinary potential of LC-MS(/MS) with QTOF and QqQ analyzers for qualitative/structural and quantitative analysis, respectively, offering analytical chemists one of the most powerful tools available at present to investigate the presence of pesticide TPs in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号