首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sugawara K  Yugami A  Kadoya T  Hosaka K 《Talanta》2011,85(1):425-429
To evaluate protein-protein interactions, a new voltammetric method was developed using a protein labeled with an electroactive compound. Concanavalin A (ConA), which is a lectin, recognizes α-mannose residues. Because the ConA was to be bound to ovalbumin (OVA), which has a high-mannose sugar chain, ConA labeled with daunomycin was prepared as the probe to monitor the binding. The binding to OVA was caused by the label modification of the ConA. As a result, the electrode response of the labeled ConA decreased as the OVA concentration increased. The electrode response of the labeled ConA was linearly over the range of 1.5 × 10−10 and 1.5 × 10−9 M OVA. The relative standard deviation of 1.5 × 10−8 M labeled ConA and 1.5 × 10−10 M OVA was 6.9% (n = 5). The labeled ConA-OVA binding could then be conveniently monitored based on the change in response. In contrast, interactions between the labeled ConA and a protein with no specific sugar chain also were investigated. Incubation scarcely influenced the peak current of the labeled ConA. When several concentrations of OVA were added to a serum, good recovery determined it. Consequently, this method could be applied to the measurement of protein-protein interactions.  相似文献   

2.
Binding of wheat germ agglutinin (WGA) on glucosamine-modified magnetic microbeads was investigated with voltammetry. A magnetic bead was considered as a cell, and the beads with amino groups were modified with the sugar by using a cross-linking reagent. To evaluate the binding, glucose labeled with an electroactive daunomycin was prepared as a probe. After WGA and the beads were mixed in 0.1 M phosphate buffer (pH 7.0), the labeled glucose was added to the solution. The binding was monitored from the changes in the electrode response of labeled glucose because the labeled glucose was held to the binding site of WGA for the sugar. In contrast, other lectin not having the binding site to glucosamine or glucose was incubated with the glucosamine-modified beads. As a result, the change of peak current was not observed. Therefore, it is clear that the binding of WGA to glucosamine moiety on the bead surface selectively takes place. This method would be powerful for evaluation of interaction between protein and sugar chain existing at cell surface.  相似文献   

3.
In this study, a peptide-1 (RNRCKGTDVQAW) constructing lysozyme was conjugated with an electroactive daunomycin in order to voltammetrically detect ovalbumin (OVA). Hetero-bifunctional cross-linking agents with four kinds of ethylene chains in differing lengths were used to bind the peptide-1 and daunomycin. After a cross-linking agent had reacted with an amino group of daunomycin, the compound was introduced into the peptide to the cysteine residue in the peptide using a pendant arm. The OVA was sensed via a change in the electrode response of the daunomycin moiety, based on the binding between the peptide and the OVA. The adsorption of the peptide probe on the electrode increased with increases in the ethylene chain. The binding constants between the peptide probes and the OVA, however, did not depend on the length of the chain. This was because the ethylene chain influenced the binding. When the peptide and the daunomycin were bound using N-(6-maleimidocaproyloxy) sulfosuccinimide, the electrode response of the peptide probe was the most sensitive from among the four cross-linking agents. The calibration curve of the OVA using the peptide probe was linear and ranged from 1.5 × 10−11 to 3.0 × 10−10 M. Furthermore, this method could be applied to the electrochemical sensing of the OVA in egg whites and in fetal bovine serum.  相似文献   

4.
To electrochemically detect concanavalin A (ConA), a new method was developed using mixed micelles between a non-ionic surfactant with a maltose moiety and electroactive daunomycin. The surfactants, in which the length of the alkyl chain was different, were n-decyl-β-d-maltoside, n-dodecyl-β-d-maltoside, and n-tetradecyl-β-d-maltoside. The measurement principle was due to the micelle breakdown caused by the binding between the ConA and maltose moieties. When ConA was combined with maltose moieties at a concentration of surfactant that was near the critical micelle concentration, the daunomycin that formed the micelles was moved to a solution from the micelles. As a result, the peak current of daunomycin increased as the concentration of ConA was increased. The mechanism was proposed using voltammetry, spectrometry, and gel filtration. The linear range using n-tetradecyl-β-d-maltoside was 2.0 × 10−9 to 8.0 × 10−8 M of ConA, and it was the most sensitive in the presence of the three surfactants. To examine whether selective binding took place, measurements with several proteins were carried out. The electrode responses of daunomycin were not influenced by the presence of 5.0 × 10−6 M protein. Furthermore, this method could be applied to the determination of ConA in a serum, and to the measurement of sugar chains that can be combined with ConA on the cell surface.  相似文献   

5.
The voltammetric behavior of wheat-germ agglutinin (WGA) on a chitin-modified carbon-paste electrode (CPE) was investigated using glucose labeled with an electroactive compound. WGA usually consists of two subunits, each with two binding sites for sugars. WGA was immobilized on the electrode surface by selective binding to a N-acetylglucosamine residue of chitin. Because glucose also combines with WGA, the glucose was coupled with electroactive daunomycin to evaluate the binding. When a WGA-labeled glucose complex was formed, the electroactive moiety became electroinactive. The binding caused a decrease in the peak current of the labeled glucose. In a measurement of only daunomycin used as a label, the peak current in a solution with WGA was similar to that in a solution without WGA. Therefore, it is clear that the labeled glucose was held in the remaining binding site of WGA on the electrode surface. Thus, a CPE modified with chitin would be powerful as a reaction field between sugar and lectin.  相似文献   

6.
《Electroanalysis》2006,18(10):1001-1006
A homogenous assay of FAD using a binding between glucose oxidase (apo‐GOD) and FAD labeled with an electroactive compound was developed. Because daunomycin is sensitively detected with voltammetry, daunomycin was connected to FAD with a cross‐linker. The peak current decreased due to the apo‐GOD‐labeled FAD binding. Competitive reaction to the apo‐GOD between FAD and the labeled FAD produces the increase of peak current. Accordingly, FAD is detected on the basis of the reaction. The merit of this method is that the influence from FMN and riboflavin in the measurement of FAD can be suppressed by the high selective binding.  相似文献   

7.
The binding between glucose residues and wheat germ agglutinin (WGA) on thionine/glucose-modified magnetic microbeads was evaluated using voltammetry. Thionine is an electroactive compound and has two amino groups. Thionine was immobilized to magnetic beads via cross-linking of the amino groups on the beads with an amino group on thionine. Glucose was bound to the other amino group of thionine via the formation of a Schiff base. The beads were only several micrometers in size the same size, as cells. WGA-binding to glucose on the bead surface blankets the thionine moiety. Thus, WGA-binding could be detected as a decrease in peak current of the thionine moiety.  相似文献   

8.
We developed a highly sensitive electrochemical system for the sensing of ovalbumin (OVA). Lysozyme origin/tyrosine‐rich peptides (RNRCKGTDVQAWY4C) were immobilized on magnetic beads, and the competitive reaction between OVA and oligothreonine/OVA origin peptide probe (T8VLLPDEVSG) could then be measured. In a previous study, the detection of OVA at the 10?13 M level was achieved using RNRCKGTDVQAWY4C‐modified beads via a cross‐linker. To improve the sensitivity to OVA, this system uses T8VLLPDEVSG peptide probe to measure the interaction to RNRCKGTDVQAWY4C immobilized on magnetic beads. The peak of Y4C actually was an electron‐transfer peptide, which represented the oxidation of a phenolic hydroxyl group. First, we confirmed that the oxidation response of Y4C was increased based on an improvement in the electron transfer accessibility by oligothreonine. Next, T8VLLPDEVSG peptide probe was used for the electrochemical sensing of OVA in solutions that contained consistent amounts of RNRCKGTDVQAWY4C on magnetic beads. As a result, the peak current decreased as the concentration of OVA increased. The sensitivity to OVA was improved compared with the use of only RNRCKGTDVQAWY4C on magnetic beads. The OVA detection level was 10?14 M, which approximates the results from antibody‐antigen reactions. Consequently, the proposed system is a powerful new concept in protein sensing.  相似文献   

9.
The voltammetric detection of soybean agglutinin (SBA) was investigated on the basis of an interaction between the lectin and a sugar. Because galactose and lactose combined with SBA, the sugars were labeled by a Schiff base with an electroactive daunomycin. After the labeled sugar and SBA were mixed, measurements were carried out by voltammetry. When SBA-sugar binding occurs, a part of daunomycin of the labeled sugar is taken to the binding sites. As a result, SBA is detected by a change in the peak current of daunomycin, and the SBA-sugar interaction is evaluated. The length of the alkyl chain between daunomycin and the sugar was also considered. The electrode response to the concentration of SBA was linear over the range of 0.04-0.8 microg min(-1). The merits of this procedure are the convenient preparation of labeled sugar and a rapid measurement without separation. On the other hand, the detection of sugar at the 10(-9) mol dm(-3) level was achieved by a competitive reaction to limited binding sites of the lectin between the sugar and the labeled sugar.  相似文献   

10.
Metal-chelating affinity beads have attracted increasing interest in recent years for protein purification. In this study, iminodiacetic acid (IDA) was covalently attached to the poly(glycidyl methacrylate) [PGMA] beads (1.6 μm in diameter). Cu(2+) ions were chelated via IDA groups on PGMA beads for affinity binding of hemoglobin (Hb) from human blood hemolysate. The PGMA beads were characterized by scanning electron microscopy (SEM). The PGMA-Cu(2+) beads (628 μmol/g) were used in the Hb binding-elution studies. The effects of Hb concentration, pH and temperature on the binding efficiency of PGMA-Cu(2+) beads were performed in a batch system. Non-specific binding of Hb to PGMA beads in the absence of Cu(2+) ions was very low (0.39 mg/g). The maximum Hb binding was 130.3 mg/g. The equilibrium Hb binding increased with increasing temperature. The negative change in Gibbs free energy (ΔG°<0) indicated that the binding of Hb on the PGMA-Cu(2+) beads was a thermodynamically favorable process. The ΔS and ΔH values were 102.2 J/mol K and -2.02 kJ/mol, respectively. Significant amount of the bound Hb (up to 95.8%) was eluted in the elution medium containing 1.0 M NaCl in 1 h. The binding followed Langmuir isotherm model with monolayer binding capacity of 80.3-135.7 mg/g. Consecutive binding-elution experiments showed that the PGMA-Cu(2+) beads can be reused almost without any loss in the Hb binding capacity. To test the efficiency of Hb depletion from blood hemolysate, eluted portion was analyzed by fast protein liquid chromatography. The depletion efficiency for Hb was above 97.5%. This study determined that the PGMA-Cu(2+) beads had a superior binding capacity for Hb compared to the other carriers within this study.  相似文献   

11.
Immunoaffinity adsorbent for transferrin (Tf) purification was prepared by immobilizing anti‐transferrin (Anti‐Tf) antibody on magnetic monosizepoly(glycidyl methacrylate) beads, which were synthesized by dispersion polymerization technique in the presence of Fe3O4nanopowder and obtained with an average size of 2.0 μm. The magnetic poly(glycidyl methacrylate) (mPGMA) beads were characterized by Fourier transform infrared spectroscopy, swelling tests, scanning electron microscopy, electron spin resonance spectroscopy, thermogravimetric analysis and zeta sizing analysis. The density and swelling ratio of the beads were 1.08 g/cm3 and 52%, respectively. Anti‐Tf molecules were covalently coupled through epoxy groups of mPGMA. Optimum binding of anti‐Tf was 2.0 mg/g. Optimum Tf binding from aqueous Tf solutions was determined as 1.65 mg/g at pH 6.0 and initial Tf concentration of 1.0 mg/mL. There was no remarkable loss in the Tf adsorption capacity of immunoaffinity beads after five adsorption–desorption cycles. Tf adsorption from artificial plasma was also investigated and the purity of the Tf molecules was shown with gel electrophoresis studies.  相似文献   

12.
Tanaka K  Imagawa H 《Talanta》2005,68(2):437-441
We developed new ELISA techniques in sequential injection analysis (SIA) mode using microreactors with content of a few microliters. We immobilized antibodies on magnetic beads 1.0 μm in diameter, injected the beads into microreactors and applied rotating magnetic fields of several hundred gauss. Magnetic beads, suspended in liquid in density of approximately 109-1010 particles per millilitre, form a large number of thin rod clusters, whose length-wise axes are oriented in parallel with the magnetic field. We rotate the Nd magnets below the center of the microreactor by a tiny motor at about 2000-5000 rpm. These rotating clusters remarkably accelerate the binding rate of the antibodies with antigens in the liquid. The beads are trapped around the center of the rotating magnetic field even in the flowing liquid. This newly found phenomenon enables easy bead handling in microreactors. Modification of reactor walls with selected blocking reagents was essential, because protein-coated beads often stick to the wall surface and cannot move freely. Washing steps were also shortened.  相似文献   

13.
A simple electrochemical binding assay for cholera toxin (CT) was developed using lactose labeled with daunomycin as an electroactive compound. The labeled lactose (LL) was determined with high sensitivity by adsorptive stripping voltammetry (AdSV). The electrochemical behaviors of LL at glassy carbon (GC), plastic formed carbon (PFC) and carbon nanotubes paste (CNTP) electrode were investigated. The CNTP electrode showed the greatest accumulation capacity for LL. The assay for CT based on the sequestration electrochemistry was demonstrated. The binding event of the LL to CT was detected by the decrease in the electrochemical response of daunomycin as an electroactive label without a separation process to remove the free LL from the one bound with CT before any measurements can be made. The detection limit of the CT assay using the CNTP electrode was 0.5 nM (42 ng mL(-1)).  相似文献   

14.
Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 μm diameter) packed in a microchannel against a physical restriction and presenting a low dead volume of 0.8 nL. These beads of high magnetic permeability are used to focus magnetic field lines from an external permanent magnet and generate local high magnetic gradients. The nanoparticles magnetic trap has been characterised both by numerical simulations and fluorescent MCSNPs imaging. Numerical simulations have been performed to map both the magnetic flux density and the magnetic force, and showed that MCSNPs are preferentially trapped at the iron bead magnetic poles where the magnetic force is increased by 3 orders of magnitude. The trapping efficiency was experimentally determined using fluorescent MCSNPs for different flow rates, different iron beads and permanent magnet positions. At a flow rate of 100 μL h(-1), the nanoparticles trapping/release can be achieved within 20 s with a preconcentration factor of 4000.  相似文献   

15.
《Chemphyschem》2003,4(7):699-704
This paper deals with single‐step, orientation‐selective immobilization of human erythrocyte membranes on bare silica beads with different topographies: 1) solid (nonporous) silica beads with a diameter of 3 μm and 2) porous silica beads with a diameter of 5 μm. Erythrocyte membranes were immobilized onto beads simply by incubation, without sonication or osmotic lysis. Membrane orientation before and after immobilization was identified with two immunofluorescence labels: 1) the extracellular part of glycophorin can be labeled with a first monoclonal antibody and a second polyclonal antibody with fluorescence dyes (outside label), while 2) the cytoplasmic domain of Band 3 can be recognized with a first monoclonal antibody and a second fluorescent polyclonal antibody (inside label). Adherent erythrocytes on the beads all ruptured, inverted the asymmetric orientation of the membrane, and selectively exposed their cytoplasmic domain. The surface topography did not influence the orientation or the amount of immobilized membrane. On the other hand, the fact that no adsorption or rupture of erythrocytes could be observed on planar quartz substrates suggests a significant influence of contact curvature on adhesion energy.  相似文献   

16.
Monodisperse crosslinked polystyrene (PS) and polymethacrylate (PMA) beads of sizes greater than 1 μm in diameter are prepared by particle nucleation onto pre-existing polymer seeds in a multistage emulsion polymerization, in the absence of emulsifier. An adequate seed number concentration, which decreases with increasing seed size, is necessary to achieve monodisperse beads. Monodisperse multicomposition beads are prepared by polymerizing styrene onto PMA seeds, but not by polymerizing methyl methacrylate onto PS seeds. Phase separation in growing seed particles or surface polymerization following free radical capture may lead to the formation of asymmetric shaped particles.  相似文献   

17.
Many materials have been fabricated using electrospinning, including pharmaceutical formulations, superhydrophobic surfaces, catalysis supports, filters, and tissue engineering scaffolds. Often these materials can benefit from microparticles included within the electrospun fibers. In this work, we evaluate a high-throughput free surface electrospinning technique to prepare fibers containing microparticles. We investigate the spinnability of polyvinylpyrrolidone (PVP) solutions containing suspended polystyrene (PS) beads of 1, 3, 5, and 10 μm diameter in order to better understand free surface electrospinning of particle suspensions. PS bead suspensions with both 55 kDa PVP and 1.3 MDa PVP were spinnable at 1:10, 1:5, and 1:2 PS:PVP mass loadings for all particle sizes studied. The final average fiber diameters ranged from 0.47 to 1.2 μm and were independent of the particle size and particle loading, indicating that the fiber diameter can be smaller than the particles entrained and can furthermore be adjusted based on solution properties and electrospinning parameters, as is the case for electrospinning of solutions without particles.  相似文献   

18.
以葡萄球菌肠毒素B(SEB)蛋白为模板分子,以聚苯乙烯微球为基质,采用表面分子印迹法制备了SEB分子印迹聚合物.利用平衡吸附试验分析了SEB聚合物对目标蛋白的吸附能力及对类似底物的选择性;分析了该聚合物的吸附动力学,并利用扫描电镜观察了其形貌特征和颗粒尺寸.结果表明,经Scatchard模型分析求得的标题聚合物的最大表观结合量Qmax为3.23mg/g;所制备的SEB分子印迹聚合物呈微球形,粒径约为12μm,对SEB蛋白具有较好的吸附性和特异选择性.  相似文献   

19.
Agarose beads (agarose concentration: 15%; diameter: 15–70 μm) were shrunk, crosslinked and derivatized in organic solvents. As crosslinker and coupling agent γ-glycidoxypropyl tri-methoxysilane was used. Columns packed with nonporous beads of pentyl agarose and octyl agarose, prepared by this technique, were used for hydrophobic-interaction chromatography. Characteristic of these columns was that the resolution increased with an increase in flow rate (except for very low flow rates). This very attractive behavior, which violates the generally accepted theory of chromatography, was also exhibited by an ion-exchanger based on non-porous agarose beads.  相似文献   

20.
Li H  Leulmi RF  Juncker D 《Lab on a chip》2011,11(3):528-534
Antibody microarrays are a powerful tool for rapid, multiplexed profiling of proteins. 3D microarray substrates have been developed to improve binding capacity, assay sensitivity, and mass transport, however, they often rely on photopolymers which are difficult to manufacture and have a small pore size that limits mass transport and demands long incubation time. Here, we present a novel 3D antibody microarray format based on the entrapment of antibody-coated microbeads within alginate droplets that were spotted onto a glass slide using an inkjet. Owing to the low concentration of alginate used, the gels were highly porous to proteins, and together with the 3D architecture helped enhance mass transport during the assays. The spotting parameters were optimized for the attachment of the alginate to the substrate. Beads with 0.2 μm, 0.5 μm and 1 μm diameter were tested and 1 μm beads were selected based on their superior retention within the hydrogel. The beads were found to be distributed within the entire volume of the gel droplet using confocal microscopy. The assay time and the concentration of beads in the gels were investigated for maximal binding signal using one-step immunoassays. As a proof of concept, six proteins including cytokines (TNFα, IL-8 and MIP/CCL4), breast cancer biomarkers (CEA and HER2) and one cancer-related protein (ENG) were profiled in multiplex using sandwich assays down to pg mL(-1) concentrations with 1 h incubation without agitation in both buffer solutions and 10% serum. These results illustrate the potential of beads-in-gel microarrays for highly sensitive and multiplexed protein analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号