首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have investigated six nanomaterials for their applicability as surfaces for the analyses of peptides and proteins using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Gold nanoparticles (NPs) were useful nanomateriais for small analytes (e.g., glutathione); Pt nanosponges and Fe3O4 NPs were efficient nanomaterials for proteins, with an upper detectable mass limit of ca. 25 kDa. Nanomateriais have several advantages over organic matrices, including lower limits of detection for small analytes and lower batch-to-batch variations (fewer problems associated with “sweet spois”), when used in laser desorption/ionization mass spectrometry.  相似文献   

2.
Kailasa SK  Wu HF 《The Analyst》2012,137(7):1629-1638
The sensitivity and efficiency of SALDI-MS or MALDI-MS is mainly dependent on the nature of matrix. A novel approach is proposed for one-pot synthesis of dopamine dithiocarbamate-functionalized gold nanoparticles (DDTC-Au NPs). Their application to quantification of small molecules by surface assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF-MS) and rapid identification of phosphopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is investigated. The synthesized DDTC-Au NPs were characterized by UV-visible and FT-IR spectroscopy, H(1)NMR, SEM and TEM. DDTC-Au NPs offers marked improvement on analyte ionization and effectively suppressed the background noise which leads to clean mass spectra. We also demonstrated the use of DDTC-Au NPs as affinity probes for selective enrichment of phosphopeptides from the solutions of microwave tryptic digested casein proteins. Compared with a conventional matrix, DDTC-Au NPs exhibited a high desorption/ionization efficiency for accurate quantification of small molecules including amino acid (glutathione), drugs (desipramine and enrofloxacin) and peptides (valinomycin and gramicidin D) and successfully utilized as novel affinity probes for straightforward and rapid identification of phosphopeptides from casein proteins (α-, β-casein and nonfat milk), showing a great potentiality to the real-time analysis.  相似文献   

3.
We describe the application of silver nanoparticles (Ag NPs) as matrices for the determination of three estrogens using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Because Ag NPs have extremely high absorption coefficients (1.2 x 10(8) M(-1) cm(-1)) at 337 nm, they are effective SALDI matrices when using a nitrogen laser. Three tested estrogens-estrone (E1), estradiol (E2), and estriol (E3)-adsorb weakly onto the surfaces of the Ag NPs, through van der Waals forces. After centrifugation, the concentrated analytes adsorbed on the Ag NPs were subjected directly to SALDI-MS analyses, with the limits of detection for E1, E2, and E3 being 2.23, 0.23, and 2.11 muM, respectively. The shot-to-shot and batch-to-batch variations for the three analytes were less than 9% and 13%, respectively. We validated the practicality of this present approach through the quantitation of E2 in human urine. Using this approach, we determined the concentration of E2 in a sample of a pregnant woman's urine to be 0.16 +/- 0.05 muM (n = 10).  相似文献   

4.
表面辅助激光解吸附/离子化质谱(Surface-assisted laser desorption/ionization mass spectrometry,SALDI-MS)是一种利用无机纳米粒子或纳米结构表面作为基质,辅助待测分子的解吸附和离子化的质谱技术。由于其具有灵敏度高、耐盐性好、操作简便、重现性好、检测通量高等优势,已经被广泛应用于食品安全、环境监测、生命科学等诸多领域。该文总结了近5年来,SALDI基质材料(金属及金属氧化物材料、碳材料、硅材料、金属有机骨架化合物材料等)的最新研究进展及其在生物检测领域中的应用,并对SALDI-MS基质材料的发展及应用进行了展望。  相似文献   

5.
We have developed a new internal standard method for the determination of the concentration of captopril (CAP) through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using gold nanoparticles (Au NPs). This approach provided linearity for CAP over the concentration range 2. 5–25 μM (R 2 = 0. 987), with a limit of detection (signal-to-noise ratio = 3) of 1. 0 μM. The spot-to-spot variations in the concentration of CAP through SALDI-MS analyses performed in the absence and presence of the internal standard were 26% and 9%, respectively (15 measurements). This approach provides simplicity, accuracy, precision, and great reproducibility to the determination of the levels of CAP in human urine samples.  相似文献   

6.
A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules.  相似文献   

7.
Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks.
Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.
  相似文献   

8.
Li  Min  Mao  Sifeng  Wang  Shiqi  Li  Hai-Fang  Lin  Jin-Ming 《中国科学:化学(英文版)》2019,62(1):142-150
Alterations in the ratio of glutathione(GSH) to glutathione disulfide(GSSG) reveal the cell living state and are associated with a variety of diseases. In this study, an Au NPs grafted nanoporous silicon chip was used for surface assisted laser desorption ionization-mass spectrometry(SALDI-MS) detection of GSH. Due to the bond interaction between thiol of GSH and Au NPs modified on the chip surfaces, GSH could be captured from the complex cellular lysate. Meanwhile, the composite nanostructures of Au NPs grafted porous silicon surface presented good desorption/ionization efficiency for GSH detection. The GSH levels in different tumor cells were successfully detected. Chip-based SALDI-MS was optimized for quantification of intracellular GSH/GSSG ratio changing under drug stimulation in liver tumor cells, GSSG was reduced to GSH by reductant of tris(2-carboxyethyl)phosphine(TCEP) and isotope-labeling GSH was as an internal standard. It was found that the increasing concentration of drug irinotecan and hypoxia culture condition caused the rapid consumption of GSH and a decrease of GSH/GSSG ratio in liver tumor cells. The developed SALDI-MS method provided a convenient way to accurately measure and rapidly monitor cellular GSH value and the ratios of GSH/GSSG.  相似文献   

9.
利用大肠埃希菌(E.coli O111:B4)中提取精制的内毒素(Control standard endotoxin,CSE)为研究对象,以MnO2/石墨烯(MnO2/G)纳米复合材料为基质,建立了一种基于MnO2/G纳米材料的表面辅助激光解吸电离质谱(Surface-assisted laser desorption ionization mass spectrometry,SALDI-MS)的内毒素检测新方法.利用SALDI-MS方法可实现对不同注射液和饮用水中内毒素的快速鉴定与定量分析.与传统的鲎试剂检测方法相比,基于MnO2/G纳米复合材料的SALDI-MS方法具有操作简便、灵敏度高、分辨率高、检测速度快、高通量和耐盐性好等优点,有望应用于更多食品和药品中细菌内毒素的高通量快速筛查.  相似文献   

10.
The use of mass spectrometry (MS) to acquire molecular images of biological tissues and other substrates has developed into an indispensable analytical tool over the past 25 years. Imaging mass spectrometry technologies are widely used today to study the in situ spatial distributions for a variety of analytes. Early MS images were acquired using secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. Researchers have also designed and developed other ionization techniques in recent years to probe surfaces and generate MS images, including desorption electrospray ionization (DESI), nanoDESI, laser ablation electrospray ionization, and infrared matrix-assisted laser desorption electrospray ionization. Investigators now have a plethora of ionization techniques to select from when performing imaging mass spectrometry experiments. This brief perspective will highlight the utility and relative figures of merit of these techniques within the context of their use in imaging mass spectrometry.  相似文献   

11.
The use of semiconductor cadmium sulphide nanoparticles (CdS NPs) capped with 4-aminothiophenol (ATP) and 11-mercaptoundecanoic acid (MUA) is described for the first time as matrices and as co-matrices for the analysis of peptides and proteins in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for the characterization of functionalized CdS NPs. The synthesized CdS-ATP and CdS-MUA NPs exhibit uniform size distribution with diameter of 15-25 nm and 20-30 nm, respectively. The -NH(2) (ATP) and -COOH (MUA) groups modified on the surfaces of CdS NPs provide ionizable moieties for efficient transfer of protons during the desorption/ionization of analytes. The functionalized CdS NPs have desirable properties for the analysis of peptides in reflectron MALDI-TOF-MS with suppressed background noise and increased mass resolution (4-13-fold) in linear MALDI-TOF-MS. The application of CdS-MUA NPs and SA as the co-matrices in MALDI-MS is demonstrated for the analysis of hydrophobic proteins from soybean.  相似文献   

12.
Novel surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) method was developed for rapid analysis of low molecular mass polyesters and their degradation products by laser desorption ionization-mass spectrometry. Three polycaprolactone materials were analyzed by the developed method before and after hydrolytic degradation. The signal-to-noise values obtained by SALDI-MS were 20–100 times higher compared with the ones obtained by using traditional MALDI-MS matrices. A clean background at low mass range and higher resolution was obtained by SALDI-MS. Different nanoparticle, cationizing agent, and solvent combinations were evaluated. Halloysite nanoclay and magnesium hydroxide showed the best potential as SALDI surfaces. The SALDI-MS spectrum of the polyester hydrolysis products was verified by ESI-MS. The developed SALDI-MS method possesses several advantages over existing methods for similar analyses.  相似文献   

13.
Tsao CW  Lin CH  Cheng YC  Chien CC  Chang CC  Chen WY 《The Analyst》2012,137(11):2643-2650
Matrix-assisted laser desorption/ionization mass spectrometry is an established soft ionization method that is widely applied to analyze biomolecules. The UV-absorbing organic matrix is essential for biomolecule ionization; however, it also creates matrix background interference, which results in problematic analyses of biomolecules of less than 700 Da. Therefore, this study investigates hydrophilic, hydrophobic cationic, anionic and immobilized metal ion surface chemical modifications to advance nanostructured silicon mass spectrometry performance (nSi-MS). This investigation provides information required for a possible novel mass spectroscopy that combines surface-enhanced and nanostructured silicon surface-assisted laser desorption/ionization mass spectrometry for the selective detection of specific compounds of a mixture.  相似文献   

14.
This study describes a strategy of using zinc selenium quantum dots (ZnSe QDs) modified with 3-mercaptopropionic acid (3-MPA) as the matrix for direct analysis of peptides and proteins from sodium salt solution in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The enhancement of detection sensitivity for these biomolecules was due to the adsorption of positively charged peptides or proteins onto the surfaces of negatively charged ZnSe-3MPA QDs via electrostatic interactions resulting in an increase in ionization efficiency for sodium adduct ions ([M+Na](+)). The applicability of the current approach was demonstrated for a variety of peptides, including leucine-enkephalin, methione-enkephalin, HW6, substance P and angiotensin II, and proteins (cytochrome c, myoglobin and lysozyme). Signal intensities of these peptides or proteins can be enhanced by 25-95 times compared with those obtained by LDI-MS in the absence of ZnSe-3MPA QDs. Applying ZnSe-3MPA QDs to serve as the matrix in SALDI-MS is a simple and effective approach for direct analysis of peptide and protein molecules from sodium salt solution without any pretreatment as the peptides and proteins can be successfully detected as sodium adduct ions ([M+Na](+)).  相似文献   

15.
In this report, we describe the visible-laser desorption/ionization of biomolecules deposited on gold-coated porous silicon and gold nanorod arrays. The porous silicon made by electrochemical etching was coated with gold using argon ion sputtering. The gold nanorod arrays were fabricated by electrodepositing gold onto a porous alumina template, and the subsequent partial removal of the alumina template. A frequency-doubled/tripled Nd : YAG laser was used to irradiate the gold nanostructured substrate, and the desorbed molecular ions were mass-analyzed by a time-of-flight mass spectrometer. The desorption/ionization of biomolecules for both substrates was favored by the use of the 532-nm visible-laser, which is in the range of the localized surface plasmon resonance of the gold nanostructure. The present technique offers a potential analytical method for low-molecular-weight analytes that are rather difficult to handle in the conventional matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.  相似文献   

16.
Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650???2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.
Figure
?  相似文献   

17.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

18.
We describe here the use of a hybrid ionization approach, matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS) in bioimaging. ME-SALDI combines the strengths of traditional matrix-assisted laser desorption/ionization (MALDI) and SALDI and enables successful MS imaging of low-mass species with improved detection sensitivity. Using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as the MS standard, MS performances of MALDI, SALDI, and ME-SALDI are systematically compared. The analyte desorption and ionization mechanism in ME-SALDI is qualitatively speculated based on the observation of significantly reduced matrix background and improved survival yields of molecular ions. Improvements in detection sensitivity of low-mass species using ME-SALDI over MALDI in imaging are demonstrated with mouse heart and brain tissues.  相似文献   

19.
Applications of mass spectrometry to food proteins and peptides   总被引:3,自引:0,他引:3  
The application of mass spectrometry (MS) to large biomolecules has been revolutionized in the past decade with the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) techniques. ESI and MALDI permit solvent evaporation and sublimation of large biomolecules into the gaseous phase, respectively. The coupling of ESI or MALDI to an appropriate mass spectrometer has allowed the determination of accurate molecular mass and the detection of chemical modification at high sensitivity (picomole to femtomole). The interface of mass spectrometry hardware with computers and new extended mass spectrometric methods has resulted in the use of MS for protein sequencing, post-translational modifications, protein conformations (native, denatured, folding intermediates), protein folding/unfolding, and protein-protein or protein-ligand interactions. In this review, applications of MS, particularly ESI-MS and MALDI time-of-flight MS, to food proteins and peptides are described.  相似文献   

20.
Patterns created by the inkjet printing of functionalized gold nanoparticles (NPs) can be selectively detected by laser desorption/ionization imaging mass spectrometry (LDI-IMS). These patterns can only be visualized by mass, providing a robust yet tunable system for potential anti-counterfeiting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号