首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We theoretically analyzed localized charge relaxation in a double quantum dot (QD) system coupled with continuous spectrum states in the presence of Coulomb interaction between electrons within a dot. We have found that for a wide range of the system parameters charge relaxation occurs through two stable regimes with significantly different relaxation rates. A certain instant of time exists in the system at which rapid switching between stable regimes takes place. We consider this phenomenon to be applicable for the creation of active elements in nano-electronics based on the fast transition effect between two stable states.  相似文献   

2.
We analyzed time evolution of the localized charge in the system of two interacting single level quantum dots coupled with the continuous spectrum states in the presence of electron-phonon interaction. We demonstrated that electron-phonon interaction leads to an increase in localized charge relaxation rate. We also found that several time scales with different relaxation rates appear in the system in the case of non-resonant tunneling between the dots. We revealed the formation of oscillations in the filling numbers time evolution caused by the emission and adsorption processes of phonons.  相似文献   

3.
We investigate the time evolution of filling numbers of localized electrons in the system of two coupled single-level quantum dots (QDs) connected with the continuous-spectrum states in the presence of Coulomb interaction. We consider correlation functions of all orders for electrons in the QDs by decoupling higher-order correlations between localized and band electrons in the reservoir. We analyze different initial charge configurations and consider Coulomb correlations between localized electrons both within the dots and between the different dots. We reveal the presence of a dynamical charge trapping effect in the first QD in the situation where both dots are occupied at the initial instant. We also find an analytic solution for the time-dependent filling numbers of the localized electrons for a particular configuration of the dots.  相似文献   

4.
One of the remarkable properties of the II–VI diluted magnetic semiconductor (DMS) quantum dot (QD) is the giant Zeeman splitting of the carrier states under application of a magnetic field. This splitting reveals strong exchange interaction between the magnetic ion moment and electronic spins in the QD. A theoretical study of the electron spectrum and of its relaxation to the ground state via the emission of a longitudinal optical (LO) phonon, in a CdSe/ZnMnSe self-assembled quantum dot, is proposed in this work. Numerical calculations showed that the strength of this interaction increases as a function of the magnetic field to become more than 30 meV and allows some level crossings. We have also shown that the electron is more localized in this DMS QD and its relaxation to the ground state via the emission of one LO phonon is allowed.  相似文献   

5.
We propose the method for identifying many particle electronic states in the system of coupled quantum dots (impurities) with Coulomb correlations. We demonstrate that different electronic states can be distinguished by the complex analysis of localized charge dynamics and non-stationary characteristics. We show that localized charge time evolution strongly depends on the properties of initial state and analyze different time scales in charge kinetics for initially prepared singlet and triplet states. We reveal the conditions for existence of charge trapping effects governed by the selection rules for electron transitions between the states with different occupation numbers.  相似文献   

6.
Microscopic calculation of the probability of Auger recombination of charge carriers localized in a semiconducting quantum dot (QD) is carried out. It is shown that two mechanism of Auger recombination (nonthreshold and quasi-threshold) operate in the QD. The nonthreshold Auger recombination mechanism is associated with scattering of a quasimomentum from a heterobarrier, while the quasi-threshold mechanism is connected with spatial confinement of the wave functions of charge carriers to the QD region; scattering of carriers occurs at the short-range Coulomb potential. Both mechanisms lead to a substantial enhancement of Auger recombination at the QD as compared to a homogeneous semiconductor. A detailed analysis of the dependence of Auger recombination coefficient on the temperature and QD parameters is carried out. It is shown that the nonthreshold Auger recombination process dominates at low temperatures, while the quasi-threshold mechanism prevails at high temperatures. The dependence of the Auger recombination coefficient on the QD radius experiences noticeable changes as compared to quantum wells and quantum filaments.  相似文献   

7.
In this paper, we study the influence of LO phonon (LOP) on the charge qubit in a quantum dot (QD), and find that the eigenenergies of the ground and first excited states are reduced due to the electron-LOP interaction. At the same time, the time evolution of the electron probability density is obtained, the dependence of the oscillating period on electron-LOP coupling constant is found, the relation of between the oscillating period and the confinement length of the QD is calculated. Finally, we consider the effects of the electron-LOP coupling constant on pure dephasing factor under considering the correction of electron-LOP interaction for the wave functions. Our results suggest that electron-LOP interaction has very important effects on charge qubit.  相似文献   

8.
We report on direct measurement of charge and its distribution in a Kondo correlated quantum dot (QD). A noninvasive potential-sensitive detector, in proximity with a QD, reveals that, although the conductance of the QD is significantly enhanced as it enters the Kondo regime, the average charge remains unaffected. This demonstrates the separation between spin and charge degrees of freedom. We find, however, under certain conditions, an abrupt redistribution of charge in the QD, taking place with an onset of Kondo correlation. This suggests a correlation between the spin and charge degrees of freedom.  相似文献   

9.
The evolution of low-temperature photoluminescence (PL) spectra of single GaAs/AlGaAs quantum dots (QD) is studied as a function of laser excitation power. At very low powers, where multi-exciton occupation of the QD can be excluded, an unexpected and pronounced spectral evolution is observed. In this weak excitation regime, a significant difference in the fine structure of single-QD spectra is observed not only among different, structurally identical QDs of the same sample, but also among spectra taken from the same single QD excited above and below the AlGaAs barrier. A time-resolved, two-color pump and probe PL experiment on a single QD indicates relaxation times between the different spectral shapes in the ms-range. A model, taking into account the influence of the shallow impurities in the environment of each QD, explains the experimental results.  相似文献   

10.
The photoconduction in a tunnel-coupled Ge/Si quantum dot (QD) array has been studied. The photoconductance (PC) sign can be either positive or negative, depending on the initial filling of QDs with holes. The PC kinetics has a long-term character (102?104 s at T = 4.2 K) and is accompanied by persistent photoconduction (PPC), whereby the PC value is not restored on the initial level even after relaxation for several hours. These phenomena are observed upon illumination by light with photon energies both greater and smaller than the silicon bandgap. A threshold light wavelength corresponding to a long-term PC kinetics depends on the QD filling with holes. A model describing the observed PC kinetics is proposed, according to which the main contribution to the PC is related to the degree of QD filling with holes. By applying the proposed model to the analysis of PC kinetics at various excitation levels, it is possible to determine the dependence of the hopping conductance on the number of holes per QD. The rate of the charge carrier density relaxation exponentially depends on the carrier density.  相似文献   

11.
A linear and nonlinear study has been made of cylindrical interface, carrying a uniform surface charge in the presence of a finite rate of charge relaxation, is investigated by using multiple scales method. The linear stability flow is analyzed by deriving a dispersion relation for the growth waves, and solving it analytically and numerically to find marginal stability curves. We investigate the electric charge relaxation effects on the stability of the flow by considering various limiting cases. We also examine the effects of finite charge relaxation times in axisymmetric and nonaxisymmetric modes. In the nonlinear approach, it is shown that the evolution of the amplitude is governed by a Ginzburg–Landau equation. There is also obtained a nonlinear modified Schrödinger equation describing the evolution of wave packets for small charge relaxation time. Further, the classic Schrödinger equation is obtained when the influence of relaxation time charge is neglected. On the other hand, the complex amplitude of quasi-monochromatic standing waves near the cutoff wavenumber is governed by a similarly type of nonlinear Schrödinger equation in which the roles of time and space are interchanged. This equation makes it possible to estimate the nonlinear effect on the cutoff wavenumber. The nonlinear theory, when used to investigate the stability of charged liquid jet, appears accurately to predict a new unstable regions. The effects of the surface charge and charge relaxation on the stability are identified. The various stability criteria are discussed both analytically and numerically and the stability diagrams are obtained.  相似文献   

12.
Self-interstitial interactions causing volume expansion in bcc Fe are studied through an idealized microstructure evolution model in which only self-interstial atoms (SIAs) are inserted. Using a combination of non-equilibrium molecular dynamics simulations and a metadynamics algorithm, meta-stable SIA clusters are observed to nucleate and grow into dislocation loops or localized amorphous phases, both contributing to swelling behavior persisting well beyond the atomistic time scale. A non-monotonic local density variation with dose rate is found and attributed to competing evolutions of different defective structures.  相似文献   

13.
Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in QDs: second-order elastic interaction between quantum dot charge carriers and LO phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing.  相似文献   

14.
The time evolution of a charge qubit coupled electrostatically with different detectors in the forms of single, double and triple quantum dot linear systems in the T-shaped configuration between two reservoirs is theoretically considered. The correspondence between the qubit quantum dot oscillations and the detector current is studied for different values of the inter-dot tunneling amplitudes and the qubit–detector interaction strength. We have found that even for a qubit coupled with a single QD detector, the coherent beat patterns appear in the oscillations of the qubit charge. This effect is more evident for a qubit coupled with double or triple-QD detectors. The beats can be also observed in both the detector current and the detector quantum dot occupations. Moreover, in the presence of beats the qubit oscillations hold longer in time in comparison with the beats-free systems with monotonously decaying oscillations. The dependence of the qubit dynamics on different initial occupations of the detector sites (memory effect) is also analyzed.  相似文献   

15.
H. Ju  Q. Gong 《Optics Communications》2006,259(2):861-867
We investigate carrier dynamics in a passive InAs/InP quantum dot (QD) waveguide using 255 fs optical pulses at a central wavelength of 1568 nm. We observe strong anisotropy of absorption saturation for different polarizations. Pump-probe measurements indicate the presence of carrier relaxation dynamics on a timescale in the order of tens of picoseconds due to cascaded relaxation of carriers generated by two-photon absorption (TPA) from the bulk region to the QDs via the wetting layer. These relaxation timescales are much longer than in QD amplifiers. Our observations are supported by a rate-equation model which includes TPA, showing good agreement with the pump-probe measurements.  相似文献   

16.
Quantum dot‐sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next‐generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. To understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO2 substrate are simulated using a rigorous ab initio density functional method. This method capitalizes on localized orbital basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO2 occurring via the strong bonding between the conduction bands of QDs and TiO2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.  相似文献   

17.
栗军  邹艳 《中国物理 B》2016,25(2):27302-027302
We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot(QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire(MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements.Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions(MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001(2008)] in our considered system.Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer.  相似文献   

18.
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio.  相似文献   

19.
In this paper the entanglement and the quantum discord (QD) dynamics of two cavities interacting with a common independent reservoir are investigated. Remarkably, it has been proved that the entanglement between two cavities can be transferred to one of the cavities and the reservoir with time evolution. Compared with the dynamics of entanglement, the QD has the similar behavior. It is found that the cavity damping rate can stabilize the entanglement and quantum discord between the cavity and reservoir. We also explore the monogamy of the entanglement and the QD during the interaction of quantum system.  相似文献   

20.
We perform numerical simulation of the Coulomb blockade microscopy on single and double quantum dots (QDs) weakly coupled to the reservoirs of the two-dimensional electron gas. The model describes the screening of the Coulomb charge at the tip of the atomic force microscope by deformation of the electron gas in the QD and in the reservoirs by a self-consistent iteration of DFT equations for the coupled subsystems. We discuss the reaction of the electrons to the tip and the shape of the effective tip potential, which in general becomes short range, strongly dependent on the tip position and asymmetric with a longer tail at the side of the QD. We determine the ground state under influence of the charged probe and obtain charge stability maps of QD as functions of the tip position. We evaluate the charging lines and compare them with the ones obtained for the perturbative conditions for which the charge density is assumed unaffected by the tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号