首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
卢辉东  铁生年 《发光学报》2018,39(5):668-673
多重激子效应是指在纳米半导体晶体中,量子点吸收一个高能光子而产生多个电子-空穴对的过程,该效应可以提高单结太阳电池能量转换效率。利用碰撞电离机制和费米统计模型计算了工作温度300 K的单结硅BC8量子点太阳能电池在AM1.5G太阳光谱下的能量转换效率。对于波长在280~580 nm的入射光,多重激子效应可以大幅增强硅BC8量子点直径d>5.0 nm的量子点太阳电池的能量转换效率。硅纳米量子点的直径d=6.3~6.4 nm时,最大能量转换效率为51.6%。  相似文献   

2.
Photoexcited dynamics of electrons and holes in semiconductor quantum dots (QD), including phonon-induced relaxation, multiple exciton generation, fission and recombination (MEG, MEF and MER), were simulated by combining ab?initio time-dependent density functional theory and non-adiabatic molecular dynamics. These nonequilibrium phenomena govern the optical properties and photoexcited dynamics of QDs, determining the branching between electronic processes and thermal energy losses. Our approach accounts for QD size and shape as well as defects, core-shell distribution, surface ligands and charge trapping, which significantly influence the properties of photoexcited QDs. The method creates an explicit time-domain representation of photoinduced processes and describes various kinetic regimes owing to the non-perturbative treatment of quantum dynamics. QDs of different sizes and materials, with and without ligands, are considered. The simulations provide direct evidence that the high-frequency ligand modes on the QD surface play a pivotal role in the electron-phonon relaxation, MEG, MEF and MER. The insights reported here suggest novel routes for controlling the photoinduced processes in semiconductor QDs and lead to new design principles for increasing the efficiencies of photovoltaic devices.  相似文献   

3.
ABSTRACT

Multiple exciton generation (MEG) in nanometer-sized hydrogen-passivated silicon nanowires (NWs), and quasi two-dimensional nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbative many-body quantum mechanics calculations based on the density functional theory simulations. Working to the second order in the electron–photon coupling and in the screened Coulomb interaction, we calculate quantum efficiency (QE), the average number of excitons created by a single absorbed photon, in the Si29H36 quantum dots (QDs) with crystalline and amorphous core structures, simple cubic three-dimensional arrays constructed from these QDs, crystalline and amorphous NWs, and quasi two-dimensional silicon nanofilms, also both crystalline and amorphous. Efficient MEG with QE ranging from 1.3 up to 1.8 at the photon energy of about 3Eg, where Eg is the electronic gap, is predicted in these nanoparticles except for the crystalline NW and crystalline film where QE ? 1. MEG in the amorphous nanoparticles is enhanced by the electron localisation due to structural disorder. Combined with the lower gaps, the nanometer-sized amorphous silicon NWs and films are predicted to have effective carrier multiplication within the solar spectrum range.  相似文献   

4.
潘洪哲  徐明  陈丽  孙媛媛  王永龙 《物理学报》2010,59(9):6443-6449
采用基于密度泛函理论的广义梯度近似(GGA),对不同尺寸(N=2—11)的单层正三角锯齿型石墨烯量子点(ZN -GNDs)的结构进行优化,得到与实验数据较好符合的晶格常数,进一步计算得到不同尺寸下体系的自旋多重度、磁矩、电子态密度以及自旋电子密度.结果表明:所有体系都呈现金属性,在尺寸较小的体系中量子尺寸效应对电子结构的影响比较明显;与单层石墨烯片一样,sp2杂化作用和非键态电子在量子点中仍起到非常重要的作用;费米能级上有自旋向上的电子分布,体系的 关键词: 石墨烯 量子点 电子结构 磁性  相似文献   

5.
We investigated the single exciton and multiple exciton generation (MEG) behavior in Ag7 and single Cu atom-doped Ag7 quantum clusters using ab initio. MEG is observed for the first time in metal clusters. The results indicate that multiple excitons appear in the visible and near ultraviolet light ranges. Single excitations are main contribution for the optical spectra, while the multiple excitons merely contribute for some peaks at the higher energies. However, occurrence of MEG enhances the optical absorption in Ag7 cluster. The optical spectrum of pure Ag7 cluster obtained using the symmetry-adapted cluster theory with configuration interaction, and time-dependent density functional theory is in excellent agreement with experiment spectrum. As observed in both single Cu atom-doped Ag7 clusters, redshifts and suppressions of the MEG-related absorption peaks are observed compared with pure Ag7 cluster.  相似文献   

6.
We investigate experimentally and theoretically few-particle effects in the optical spectra of single quantum dots (QDs). Photodepletion of the QD together with the slow hopping transport of impurity-bound electrons back to the QD are employed to efficiently control the number of electrons present in the QD. By investigating structurally identical QDs, we show that the spectral evolutions observed can be attributed to intrinsic, multi-particle-related effects, as opposed to extrinsic QD-impurity environment-related interactions. From our theoretical calculations we identify the distinct transitions related to excitons and excitons charged with up to five additional electrons, as well as neutral and charged biexcitons.  相似文献   

7.
郑瑞伦 《物理学报》2007,56(8):4901-4907
建立了圆柱状量子点量子导线复合系统中激子满足的方程,用微扰论求出激子能量.以CdS/HgS/CdS/HgS/CdS圆柱状量子点量子导线复合系统为例,研究了系统中电子的概率分布和系统线度对激子能量的影响.结果表明:系统中电子、空穴以及激子的能量均随量子点高度h0的增大而减小,电子-空穴相互作用对基态激子能量的影响要大于激发态;电子沿径向方向的概率分布呈起伏状,在轴线和表面附近的概率趋于零,而在R/2附近概率最大;在量子点附近电子沿轴向方向的概率分布呈振荡特征 关键词: 量子点 量子导线 激子 能量  相似文献   

8.
We present a theory of the photonic band structure of three-dimensional arrays of quantum dots (QDs). A system of Maxwell’s and material equations is solved and the dispersion equation for exciton-polaritons is derived making allowance for a nonlocal dielectric response of quasi-zero-dimensional excitons confined in QDs. The reflection and transmission coefficients are calculated for a single plane, a pair of planes and a stack of equidistant planes of QDs. Two different approaches are proposed to perform a calculation. One of them is based on recurrent equations relating the reflection coefficients for N + 1 and N planes, while in the other approach the Bloch solutions for an infinite QD lattice are used.  相似文献   

9.
邢雁  王志平  王旭 《发光学报》2007,28(6):843-846
采用推广的LLP方法研究了自组织量子点中磁激子的极化子效应。考虑带电粒子和声子的相互作用,得到了激子能量随磁场的变化关系。结果表明,激子-声子的相互作用降低了激子的能量,但影响很小;极化子效应在没有外磁场时较明显,随着外磁场的增加,这种效应变得越来越弱。  相似文献   

10.
Temperature dependent behavior of the responsivity of InAs/GaAs quantum dot infrared photodetectors was investigated with detailed measurement of the current gain. The current gain varied about two orders of magnitude with 100 K temperature change. Meanwhile, the change in quantum efficiency is within a factor of 10. The dramatic change of the current gain is explained by the repulsive coulomb potential of the extra carriers in the QDs. With the measured current gain, the extra carrier number in QDs was calculated. More than one electron per QD could be captured as the dark current increases at 150 K. The extra electrons in the QDs elevated the Fermi level and changed the quantum efficiency of the QDIPs. The temperature dependence of the responsivity was qualitatively explained with the extra electrons.  相似文献   

11.
Efficient multiple-exciton generation (MEG) in semiconductor quantum dots has been recently reported. The MEG efficiency has so far been evaluated assuming that the change (bleaching) of the absorption spectrum due to MEG is linearly proportional to the number of excitons N(X). Here, we critically examine this assumption using atomistic pseudopotential calculations for colloidal CdSe nanocrystals. We find that the bleaching of the first absorption peak depends nonlinearly on N(X), due to carrier-carrier interactions. This nonlinearity mandates an upper bound of 1.5 to the value of the normalized bleaching that can be attributed to MEG, significantly smaller than the limit of 2.0 predicted by the linear scaling assumption. Thus, measured values of the normalized bleaching in excess of 1.5 cannot be due entirely to MEG, but must originate in part from other mechanisms.  相似文献   

12.
We address theoretically the evolution of the heavy fermion Fermi surface (FS) as a function of temperature (T), using a first principles dynamical mean-field theory approach combined with density functional theory. We focus on the archetypical heavy electrons in CeIrIn{5}. Upon cooling, both the quantum oscillation frequencies and cyclotron masses show logarithmic scaling behavior [~ln(T{0}/T)] with different characteristic temperatures T{0}=130 and 50 K, respectively. The enlargement of the electron FSs at low T is accompanied by topological changes around T=10-50 K. The resistivity coherence peak observed at T?50 K is the result of the competition between the binding of incoherent 4f electrons to the spd conduction electrons at Fermi level (E{F}) and the formation of coherent 4f electrons.  相似文献   

13.
GaN半导体中InN量子点的结构性质   总被引:5,自引:3,他引:2       下载免费PDF全文
采用第一性原理模拟计算纤锌矿结构GaN半导体中InN量子点的结构性质。建立64和128个原子的超原胞量子点模型,进行结构优化以获得稳定的吻合实际的系统,并模拟分析电子结构。从态密度空间分布图看到不同轴向的量子势阱形状各异、深度不一,说明量子点的限域效应存在着各向异性的特点。c轴极化方向引起量子点结构带边的弯曲形状与传统的量子阱结构不同,使得电子空穴没有发生空间分离,有利于电子空穴的跃迁几率的提高。  相似文献   

14.
刘承师  向涛 《物理》2004,33(11):809-815
近年来,半导体量子阱中激子的玻色一爱因斯坦凝聚研究取得了很大进展.实验上利用耦合量子阱间接激子中电子和空穴在空间上的分离,显著提高了激子的冷却速度和寿命,成功地把激子冷却到1K以下,观察到了激子的准凝聚状态,并且在强激光照射下,发现了随光照强度增强而增大的激子发光环和环上形成的有规则斑点图案,引起了广泛的兴趣和重视.理论研究表明,发光环的出现是电子和空穴在量子阱中的反常输运行为造成的,但环上形成规则斑点的物理机理目前尚不清楚.文章介绍了这方面的实验背景和形成激子环的物理图像,指出了理论研究中存在的问题,并对解决问题的方案进行了讨论.  相似文献   

15.
The growth of GaAs based 1.5 ??m multi-layer stacked InAs quantum dots (QDs) has been investigated by solid-source molecular beam epitaxy (SSMBE), which was very important devices for transmission window. Owing to a strong electronic coupling between the QDs layers and the quantum wells (QWs), and antimony (Sb) introduced by for long-wavelength semiconductor lasers were obtained. The device structure for QDs laser diodes (LDs) with a cavity length of 1000 ??m and stripe width of 100 ??m as well as the device fabrication results will also be presented. The output performance was achieved with continuous wave (CW) operation, the measurement were from 20 to 60°C with a temperature step of 10°C. The threshold current density was 168 A/cm2, and the CW operating up to 20 mW at room temperature (RT) was achieved.  相似文献   

16.
Resonant tunneling of electrons through a quantum level in single self-assembled InAs quantum dot (QD) embedded in thin AlAs barriers has been studied. The embedded InAs QDs are sandwiched by 1.7-nm-thick AlAs barriers, and surface InAs QDs, which are deposited on 8.3 nm-thick GaAs cap layer, are used as nano-scale electrodes. Since the surface InAs QD should be vertically aligned with a buried one, a current flowing via the buried QD can be measured with a conductive tip of an atomic force microscope (AFM) brought in contact with the surface QD-electrode. Negative differential resistance attributed to electron resonant tunneling through a quantized energy level in the buried QD is observed in the current–voltage characteristics at room temperature. The effect of Fermi level pinning around nano-scale QD-electrode on resonance voltage and the dependence of resonance voltage on the size of QD-electrodes are investigated, and it has been demonstrated that the distribution of the resonance voltages reflects the size variation of the embedded QDs.  相似文献   

17.
刘长菊  卢敏  苏未安  董太源  沈文忠 《物理学报》2018,67(2):27302-027302
多重激子效应是指纳米半导体吸收一个高能光子后产生两个甚至多个电子-空穴对的物理过程,不仅具有重要的基础研究意义,而且在新型太阳电池及高性能光电子器件领域具有潜在应用价值.综述了多重激子效应的发展历程;总结了纳米半导体的材料组分、体系结构甚至表面质量对多重激子效应的影响;介绍了多重激子效应的实验测试分析方法以及解释多重激子效应的理论方法;概括了目前多重激子效应在器件中的应用并对其应用前景进行展望.  相似文献   

18.
One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system’s symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.  相似文献   

19.
王早  张国峰  李斌  陈瑞云  秦成兵  肖连团  贾锁堂 《物理学报》2015,64(24):247803-247803
利用N型半导体纳米材料氧化铟锡(ITO)作为单CdSe/ZnS量子点的基质来抑制单量子点的荧光闪烁特性. 实验采用激光扫描共聚焦显微成像系统测量了单量子点荧光的亮、暗态持续时间的概率密度分布的指数截止的幂律特性, 并与直接吸附在SiO2玻片上的单CdSe/ZnS量子点的荧光特性进行比较. 研究发现处于ITO中的单量子点比SiO2玻片上的单量子点荧光亮态持续时间提高两个数量级, 掺杂于ITO中的单量子点的荧光寿命约减小为SiO2玻片上的单量子点的荧光寿命的41%, 并且寿命分布宽度变小50%.  相似文献   

20.
We present a simple analytical approach to calculate the built-in strain-induced and spontaneous piezoelectric fields in nitride-based quantum dots (QDs) and then apply the method to describe the variation of exciton, biexciton and charged exciton energy with dot size in GaN/AlN QDs. We first present the piezoelectric potential in terms of a surface integral over the QD surface, and confirm that, due to the strong built-in electric field, the electrons are localised near the QD top and the holes are localised in the wetting layer just below the dot. The strong localisation and smaller dielectric constant results in much larger Coulomb interactions in GaN/AlN QDs than in typical InAs/GaAs QDs, with the interaction between two electrons, Jee, or two holes, Jhh, being about a factor of three larger. The electron–hole recombination energy is always blue shifted in the charged excitons, X and X+, and the biexciton, and the blue shift increases with increasing dot height. We conclude that spectroscopic studies of the excitonic complexes should provide a useful probe of the structural and piezoelectric properties of GaN-based QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号