首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio molecular orbital and DFT calculations have been carried out for three most stable dimers of parent nitrosamine (NA) in order to elucidate the structures and energetics of the dimers. The structures were optimized using HF, B3LYP, and MP2 methods with 6‐311+G(d,p) and 6‐311++G(2d,2p) basis sets. At the optimized geometries obtained at MP2/6‐311++G(2d,2p) level of theory, the energies were evaluated at QCISD/aug‐cc‐pVDZ and CCSD/aug‐cc‐pVDZ levels. The most stable dimer has two N? H···O?N hydrogen bonds and the least stable dimer has two N? H···N?O hydrogen bonds. The natural bond orbital analysis showed that the lpO(N) → BD*(N? N) and lpO(N) → BD*(N? Hb) interactions play a decisive role in the stabilization of the NH···O(N) hydrogen bonds in dimers. The atoms in molecules results reveal that the intermolecular N? H···O(N) H‐bonds in dimers have electrostatic character. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
The structural properties of the three open chain C4H8O4 sugars, i.e. two aldoses (erythrose and threose) and one ketose (erythrulose), have been investigated by DFT and ab initio calculations to get accurate structures and relative energies. The structure of all the conformers predicted within 10 kJ/mol has been optimized at the B3LYP/6-311++G(d,p) level of the theory. Two types of intramolecular hydrogen bonds have been clearly identified. They are related to the hydroxyl and to the carbonyl oxygen atoms and are of weak and middle strength, respectively. The most stable structures have been optimized at the B3LYP/6-311++G(2df,p) and at the MP2/6-311++G(2df,p) levels of the theory in order to calculate accurate rotational parameters and dipole moment for their future detection in the microwave range in the gas phase. Their corresponding harmonic IR spectra have also been calculated and their fingerprint signature is discussed in the region of the OH stretching vibrations, of the torsion of the C–O bonds and of the deformation of the C–C skeleton.  相似文献   

3.
The 1H, 13C and 1H, 13C COSY NMR spectra of salicylohydroxamic acid (sha) were measured in DMSO-d6 solution. The B3LYP GIAO method with the 6-311++G(d,p) basis set was chosen to reproduce the experimental spectra. All possible zusammen and entgegen conformers of monomeric sha were computed. After geometry optimisation (B3LYP/6-311++G(d,p)) only nine independent models of the molecule were shown to be stable. Additionally, the NMR chemical shifts of the Onsager model of the most stable monomer were calculated. The computed chemical shifts for the labile protons for all aforementioned geometries meaningfully underestimated experimental results suggesting the existence of the H-bonded structure of sha in DMSO solution. The most probable two dimeric structures along with two solvent-bounded aggregates were subsequently calculated at the same level of theory. The best agreement was obtained for sha H-bonded with two DMSO molecules (confirmed by the absence of concentration effect). The relative error not exceeding 10 and 4% for chemical shifts in 1H and 13C NMR spectra of sha–(DMSO)2, respectively, showed that the applied method with the B3LYP/6-311++G(d,p) basis set was efficient to predict the NMR shifts of a compound with strong H-bonds. Thus, this allows to assign properly NMR resonances to specific structure formed in DMSO solution.  相似文献   

4.
The structure of β-cyclodextrin (β-CD), as well as the structure and energetics of β-CD-naphthalene, β-CD-fluorene, β-CD-phenanthrene, β-CD-cyclohexane (1:1), and β-CD-naphthalene (2:2) inclusion complexes was studied by the semiempirical MNDO/PM3 method. Calculations of a β-CD-naphthalene-cyclohexane (1:1:1) complex were also performed. The minimum heat of formation was found for the symmetric β-CD conformation withC 7 symmetry axis. The structure is stabilized by the ring of interunit H-bonds formed by the protons of the 2-OH groups and the O atoms of the 3′-OH groups of the glucose units. Preferableness of this orientation of interunit H-bonds was confirmed byab initio calculations of the molecule of α-(1–4)-glucobiose (maltose) in the MP2/6-31G(d,p)//6-31G(d,p) approximation. The formation of any inclusion compounds of β-CD with arenes is energetically favorable: the complexation energy varies in the range −9 to −12 kcal mol−1. Among complexes with naphthalene, that of composition 2:2 is the most energetically favorable, which is in agreement with experimental data. In this complex, β-CD exists as a dimer of the “head-to-head” type, in which both partners are linked by a system of H-bonds. The structure of the “head-to-head” dimer of β-CD was simulated byab initio calculations of the H-bonded dimer of α-d-glucose in the RHF/6-31G(d,p) approximation. In the dimer, both components are linked by a pair of H-bonds formed by the protons of the 3-OH groups and the O atoms of the, 2-OH groups. The dimerization energies obtained fromab initio and semiempirical MNDO/PM3 and AM1 calculations differ by about 2.5 times (8.6vs 3.2 and 3.8 kcal mol−1, respectively).  相似文献   

5.
B3LYP/6-311+G(2d,p), the density functional theory method of 98 package, is applied to study the hydrogen bonding of a series of linear (HCN)n and (HNC)n molecular clusters (for n=1–10). By the localization analysis methods we developed, pair-wised σ type H-bond orders and bond energies are calculated for each pair of the two near-by molecules in both (HCN)n and (HNC)n clusters. The calculated results are checked well with the shortening of N–H or C–H distance, the elongation of CH or NH bond distance, and the red shift of stretching frequencies of CH or NH. All pieces of evidence show that the central pair of the two molecules forms the strongest H bond when n of (HCN)n or (HNC)n is even, and the two middle pairs form the two strongest H bonds when n is odd. Two terminal pairs of HCN or HNC molecules always form the two weakest H-bonds in each molecular cluster. When comparing molecular cluster energies between (HCN)n and (HNC)n for various values of n, the well-known (HCN)n is found more stable than the related (HNC)n from energy calculation. However, if outcomes of H-bond local analysis are contrasted, our analysis significantly shows that inter-molecular H-bonds inside of (HNC)n clusters are much stronger than the corresponding H-bonds in (HCN)n with the same n. In comparing energy differences between these related clusters per monomer, [E(HNC)nE(HCN)n]/n is found decreasing monotonically as n increases. All pieces of evidence from this theoretical prediction indicate that (HNC)n with large n is probably constructed by its relative strong H-bonds.  相似文献   

6.
Post Hartree–Fock and density functional theory (DFT) methods have been employed to study the molecular properties of Di-Protonated Allopurinol2+ tautomers in gaseous and aqueous phase environments. The tautomers in gaseous phase have been optimized at MP2/6-311G(2d,2p) and B3LYP/6-311G(2d,2p) levels of theory. The self-consistent reaction field theory (SCRF) has been employed to optimize the tautomers in aqueous phase (ε = 78.5) at B3LYP/6-311G(2d,2p) level of theory and the solvent effect has been studied. The structure, energetics and relative stabilities of the tautomers have been analyzed both in gaseous and aqueous phases. The principle of maximum hardness (MHP) has been tested at B3LYP/6-311G(2d,2p) level of theory. The condensed Fukui functions have been calculated using the atomic charges obtained through Natural population analysis to identify the relative change in the most reactive site of the optimized structures. NMR studies have been carried out, on the basis of Cheeseman coworker’s method, to analyze the molecular environment as well as the delocalization activities of electron clouds.  相似文献   

7.
The effects of intra- and intermolecular electrostatic interactions and hydrogen bonding on the conformation of 3-(2-hydroxymethyl-pyridinium)-propionic acid bromide (1) and 3-(2-hydroxyethyl-pyridinium)-propionic acid bromide (2) have been studied. In 1, the molecules are linked by Br ion to form two intermolecular hydrogen bonds COOHBrHOCH2 (O(1)Br=3.175(3) and O(3)Br=3.305(3) Å) yielding chains. The molecules of 2 form centrosymmetric dimers connected by a pair of H-bonds between COOH and CH2OH groups (O(1)O(3)=2.674(3) Å), and the H-bonded CH2OH group further interacts with the Br ion (O(3)Br=3.166(5) Å). In both the compounds, the Br ion additionally interacts electrostatically with the positively charged nitrogen atom. To analyse these interactions theoretically, the structures of 3-(2-hydroxy-alkyl)pyridinium propionates (betaines) and their hydrogen bromides as monomers and dimers in various configurations are analysed by PM3 and B3LYP/6-31G(d,p) calculations. Although both electrostatic interactions and H-bonds strongly affect the conformation of the investigated compounds, the former effect seems to be dominant. FTIR spectra of 1 and 2 in the solid state are analysed.  相似文献   

8.
The optimized geometries, relative free energies and related thermodynamic properties, harmonic frequencies, and dipole moments have been calculated at the HF and MP2 levels for ethynyl formate (1a), ethynyl acetate (1b), cyano formate, HCO2CN (1c), cyano acetate (1d), S-ethynyl thioformate (2a), S-ethynyl thioacetate (2b), S-cyano thioformate (2c), S-cyano thioacetate (2d), N-ethynylformamide (3a), N-ethynylacetamide (3b), N-cyanoformamide (3c), and N-cyanoacetamide (3d) with the gaussian 98 program. For ethynyl formate, the calculation for 25 °C at the MP2/6-311++G(df,pd) level predicts that the Z isomer is more stable by 1.23 kcal/mol. For S-ethynyl thioformate, calculations at the MP2/6-311++G(2d,2p) level predict that the E isomer is favored by 0.71 kcal/mol at 25 °C. The E isomers of N-ethynylformamide and N-ethynylacetamide were found at all levels to be more stable than the Z isomers at 25 °C. For cyano formate and cyano acetate, calculations at the MP2/6-311++G(df,pd) level predict that the Z isomers are more stable at 25 °C by 1.50 and 2.72 kcal/mol, respectively. At this level and temperature, the Z isomers of 2c, 2d, 3c, and 3d are predicted to have free energies of 0.46, −0.07, 1.22, and 2.28 kcal/mol, respectively, relative to the E conformations. Z to E free-energy barriers at 25 °C of 8.63, 10.64, 17.63, 7.39, and 14.03 kcal/mol were calculated for 1a, 2a, 3a, 1c, and 3c at the HF/6-311G(d,p) level, and at the HF/6-311+G(d,p) level, the free-energy barrier for 2c was 7.08 kcal/mol.  相似文献   

9.
Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO...HON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO...HN hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular NH...O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies (DeltaE(ZPE)(CP)I, II=-7.02, -6.34 kcal mol-1) being less stable than calculated structures III and IV (DeltaE(ZPE)(CP)III, IV=-9.50, -8.87 kcal mol-1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO...HON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA)2 dimers in the studied matrixes indicates that the formation of (AHA)2 is kinetically and not thermodynamically controlled.  相似文献   

10.
Hartree-Fock (HF) calculations using 6-31G*, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets show that hydrogen peroxide molecular clusters tend to form hydrogen-bonded cyclic and cage structures along the lines expected of a molecule which can act as a proton donor as well as an acceptor. These results are reiterated by density functional theoretic (DFT) calculations with B3LYP parametrization and also by second-order M?ller-Plesset perturbation (MP2) theory using 6-31G* and 6-311++G(d,p) basis sets. Trends in stabilization energies and geometrical parameters obtained at the HF level using 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are similar to those obtained from HF/6-31G* calculation. In addition, the HF calculations suggest the formation of stable helical structures for larger clusters, provided the neighbors form an open book structure.  相似文献   

11.
The structure of the proton-bound lysine dimer has been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. The structures of different possible isomers of the proton-bound lysine dimer have been optimized at the B3LYP/6-31 + G(d) level of theory and IR spectra calculated using the same computational method. Based on relative Gibbs free energies (298 K) calculated at the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d) level of theory, LL-CS01, and followed closely (1.1 kJ mol–1) by LL-CS02 are the most stable non-zwitterionic isomers. At the MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + (d,p) levels of theory, isomer LL-CS02 is favored by 3.0 and 2.3 kJ mol–1, respectively. The relative Gibbs free energies calculated by the aforementioned levels of theory for LL-CS01 and LL-CS02 are very close and strongly suggest that diagnostic vibrational signatures found in the IRMPD spectrum of the proton-bound dimer of lysine can be attributed to the existence of both isomers. LL-ZW01 is the most stable zwitterionic isomer, in which the zwitterionic structure of the neutral lysine is well stabilized by the protonated lysine moiety via a very strong intermolecular hydrogen bond. At the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d), MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + G(d,p) levels of theory, the most stable zwitterionic isomer (LL-ZW01) is less favored than LL-CS01 by 7.3, 4.1 and 2.3 kJ mol–1, respectively. The experimental IRMPD spectrum also confirms that the proton-bound dimer of lysine largely exists as charge-solvated isomers. Investigation of zwitterionic and charge-solvated species of amino acids in the gas phase will aid in a further understanding of structure, property, and function of biological molecules.  相似文献   

12.
To explore the regio- and stereoselectivity in Diels–Alder reactions of vinylallenes with acrolein, a parent vinylallene/acrolein system and a methyl-substituted vinylallene/acrolein system were studied. Ab initio calculations were used to identify eight transition state structures for each of the two Diels–Alder reactions at various computational levels (RHF/6-31G(d), RHF/6-311G(2d), B3LYP/6-311G(2d), and MP2/6-311G(2d)). The relative energies of the endo and exo transition states along with the regioselectivity have been determined from these calculations. In the parent vinylallene/acrolein system, the endo s-cis transition structure is the preferred stereoselectivity at all levels of theory, however, there is no regioselectivity. In the methyl substituted vinylallene/acrolein system, the endo s-trans transition state tends to compete with the endo s-cis transition state at the RHF levels of theory and is 1 kcal/mol more stable at the B3LYP/6-311G(2d) level of theory. Also, in the methyl-substituted system, there is now a definite preference for one regioisomer over the other. Both Diels–Alder reaction systems are asynchronous with the methyl-substituted system being more pronounced.  相似文献   

13.
The 1H and 13C NMR spectra of 2-(hydroxyimino)propanohydroxamic acid (hpha) were measured in DMSO-d6 solution. The set of several monomeric structures along with the cluster of H-bonded hpha with three DMSO molecules were proposed to fit the experimental data. The calculated chemical shifts [B3LYP/6-311++G(d,p)] strongly suggested the formation of the cluster in which all the labile protons were H-bonded to the solvent molecules. The comparison between experimental and calculated Raman spectra of hpha in DMSO also suggested that in these conditions the investigated compound forms the proposed cluster rather than dimers. According to our calculations [B3LYP/6-31+G(d)] this cluster was energetically stabilized (84-106 kJ mol-1) compared to postulated dimeric structures. On the other hand, formation of dimers was proposed to be present for hpha in solid state. The comparison of the vibrational data (IR, RS) with the computed harmonic frequencies of three most probable dimers [B3LYP/6-31+G(d)] suggested that the dimer in which molecules adopted the zEe-keto form and were linked by two symmetric, almost linear H-bonds between the carbonyl oxygen atoms and the hydroxamic O-H protons was the predominant species of hpha in the solid state. Thus, the structures of hpha in solid state and DMSO solution appeared to be different.  相似文献   

14.
《Chemical physics letters》2003,367(3-4):423-429
Carbonyl oxide is a well-known intermediate formed in gas-phase reactions of ozone with alkenes. Secondary reactions of carbonyl oxide are suggested to lead to the formation of HO, H2O2 and organic peroxides in the atmosphere. We performed a theoretical study of reactions of carbonyl oxide with water and a water dimer. Using CCSD(T)/6-311+G(2d,2p)//B3LYP/6-311+G(2d,2p) calculations we found that the most energetically favourable channel is the formation of hydroxymethyl hydroperoxide (HMHP) as the result of reactions of carbonyl oxide with the water dimer. The potential importance of water dimer reactions in the chemistry of the troposphere is discussed herein.  相似文献   

15.
We have used density functional theory to investigate how Al(13) cluster dimers can be formed with or without a bridging hydrogen. We have identified several stable dimers in which 0, 1, or 2 hydrogen atoms link two bare clusters together. Each of these structures can adsorb further H atoms in atop sites on the surface of the dimer. Additional dimers were identified with 3 and 4 H atoms linking the clusters but these are only stable in the multihydrogenated form. Reaction profiles for the formation of these dimers from a range of cluster and H atom combinations indicate that the dimer structures are energetically favored over the isolated clusters. This observation may have significant implications for the design of cluster-assembled materials.  相似文献   

16.
Vitamin C is known as an essential dietary supplement and implicated in diverse biological processes. We present here a theoretical study on the nature of hydrogen bonding of vitamin C in biological systems. For this reason, the complexes of vitamin C (VC) with neutral and zwitterionic L-alanine (as the simplest chiral amino acid) were studied at the MP2/6-311++G(d,p) level of theory. In the gas phase, neutral L-alanine leads to more stable complexes than the zwitterionic forms while the reverse is true in the aqueous phase. The complexes are formed via two hydrogen bond interactions, which result in a ring-like hydrogen-bonded networks. The nature of H-bonds was characterized in terms of natural bond orbital and quantum theory of atoms in molecule analyses (QTAIM). The H-bonds in the studied complexes were electrostatic in nature; however, in the case of shorter and directional H-bonds and ionic interactions, contributions of covalent character were also non-negligible. Natural energy decomposition analysis of hydrogen-bonded complexes reveals that the charge transfer and electrical components are the largest contributors for the interaction energies of complexes. Natural resonance theory analysis suggests higher resonance weight for charge-assisted interactions of vitamin C---alanine (zwitterionic) complexes, where the total interaction energy is considerably higher than that of neutral alanine.  相似文献   

17.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

18.
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations.  相似文献   

19.
An extensive quantum chemical study of the potential energy surface (PES) for all possible isomerization and dissociation reactions of CH3CN is reported at the DFT (B3LYP/6-311++G(d,p)) and CCSD(T)/ cc-pVTZ//B3LYP/6-311++G(d,p) levels of theory. The pathways around the equilibrium structures can be discovered by the scaled hypersphere search (SHS) method, which enables us to make a global analysis of the potential energy surface for a given chemical composition in combination with a downhill-walk algorithm. Seventeen equilibrium structures and 59 interconversion transition states have been found on the singlet PES. The four lowest lying isomers with thermodynamic stability are also kinetically stable with the lowest conversion barriers of 49.69-101.53 kcal/mol at the CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p) level, whereas three-membered-ring isomers c-CH2NCH, c-CH2CNH, and c-CHNHCH can be considered as metastable intermediates which can further convert into the low-lying chain-like isomers and higher lying acyclic isomers with the lowest conversion energies of 21.70-59.99 kcal/mol. Thirteen available dissociation channels depending on the different initial isomers have been identified. A prediction can be made for the possible mechanism explaining the migration of a hydrogen atom in competition with the CC bond dissociation. Several new energetically accessible pathways are found to be responsible for the migration of the hydrogen atom. The present results demonstrate that the SHS method is an efficient and powerful technique for global mapping of reaction pathways on PESs.  相似文献   

20.
Variable temperature studies of the infrared spectra (3500–400 cm−1) of 1-pentyne, CH3CH2CH2CCH, dissolved in liquid xenon (−55 to −100°C) and liquid krypton (−105 to −150°C) have been recorded. These data indicate that the anti (methyl group trans to the acetylenic group) and gauche conformers have relative concentrations that vary with the temperature, i.e. enthalpy nonzero. Utilizing seven sets of conformer pairs for the xenon solution and ten sets of conformer pairs for the krypton solution, the enthalpy difference has been determined to be 50±6 cm−1 (0.60±0.07 kJ/mol) and 45±4 cm−1 (0.54±0.05 kJ/mol), respectively, with the anti conformer the more stable form. Because of two equivalent gauche forms, this conformer is estimated to be in higher abundance at 61±1% in the xenon solution and 62±1% in the krypton solution. Optimized geometries and conformational stabilities have been obtained from ab initio calculations with basis sets 6-31G(d), 6-311+G(d,p), 6-311+G(2d,2p) and 6-311+G(2df,2pd) with full electron correlation by the perturbation method to second order (MP2). All of the calculations predict the gauche rotamer to be the more stable form with a high value of 181 cm−1 from the MP2/6-311+G(d,p) calculations and a low value of 107 cm−1 from the MP2/6-311+G(2d,2p) calculation. The ro adjusted structural parameters have been obtained from a combination of the microwave rotational constants and ab initio predicted parameters. The values are compared to the recently reported values from an electron diffraction study where the value for the CC bond distance appears to be too long. The results are discussed and the conformational stability is compared to those obtained for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号