首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by the gravity-driven incompressible Navier–Stokes equations, and the effect of surface tension is neglected on the free surface. The long time behavior of solutions near equilibrium has been an intriguing question since the work of Beale (Commun Pure Appl Math 34(3):359–392, 1981). This paper is the third in a series of three (Guo in Local well-posedness of the viscous surface wave problem without surface tension, Anal PDE 2012, to appear; in Decay of viscous surface waves without surface tension in horizontally infinite domains, Preprint, 2011) that answers this question. Here we consider the case in which the free interface is horizontally periodic; we prove that the problem is globally well-posed and that solutions decay to equilibrium at an almost exponential rate. In particular, the free interface decays to a flat surface. Our framework contains several novel techniques, which include: (1) a priori estimates that utilize a “geometric” reformulation of the equations; (2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free interface; (3) a localization procedure that is compatible with the energy method and allows for curved lower surface geometry. Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.  相似文献   

2.
This paper concerns the dynamics of two layers of compressible, barotropic, viscous fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and t he upper fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem: the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted on by gravity in the bulk, and at the free interfaces we consider both the case of surface tension and the case of no surface forces.We are concerned with the Rayleigh–Taylor instability when the upper fluid is heavier than the lower fluid along the equilibrium interface. When the surface tension at the free internal interface is below the critical value, we prove that the problem is nonlinear unstable.  相似文献   

3.
In this paper, we are concerned with free boundary problem for compressible viscous isotropic Newtonian fluid. Our problem is to find the three-dimensional domain occupied by the fluid which is bounded below by the fixed bottom and above by the free surface together with the density, the velocity vector field and the absolute temperature of the fluid satisfying the system of Navier-Stokes equations and the initial-boundary conditions. The Navier-Stokes equations consist of the conservations of mass, momentum under the gravitational field in a downward direction and energy. The effect of the surface tension on the free surface is taken into account. The purpose of this paper is to establish two existence theorems to the problem mentioned above: the first concerns with the temporary local solvability in anisotropic Sobolev-Slobodetskiĭ spaces and the second the global solvability near the equilibrium rest state. Here the equilibrium rest state (heat conductive state) means that the temperature distribution is a linear function with respect to a vertical direction and the density is determined by an ordinary differential equation which involves equation of state. For the proof, we rely on the methods due to Solonnikov in the case of incompressible fluid with some modifications, since our problem is hyperbolic-parabolic coupled system. Dedicated to Professors Takaaki Nishida and Masayasu Mimura on their sixtieth birthdays  相似文献   

4.
We develop semi-analytical, self-similar solutions for the oscillatory boundary layer (‘Stokes layer’) in a semi-infinite power-law fluid bounded by an oscillating wall (the so-called Stokes problem). These solutions differ significantly from the classical solution for a Newtonian fluid, both in the non-sinusoidal form of the velocity oscillations and in the manner at which their amplitude decays with distance from the wall. In particular, for shear-thickening fluids the velocity reaches zero at a finite distance from the wall, and for shear-thinning fluids it decays algebraically with distance, in contrast to the exponential decay for a Newtonian fluid. We demonstrate numerically that these semi-analytical, self-similar solutions provide a good approximation to the flow driven by a sinusoidally oscillating wall.  相似文献   

5.
The two-dimensional problem of the form of a free surface of an ideal incompressible fluid during steady flow from a rectangular channel through a thin slot with simultaneous uniform delivery of fluid through the side walls is examined. Forces of gravity and surface tension are taken into account. The nonlinear problem of the simultaneous determination of the free surface and velocity field of the fluid is solved by the iteration method. Convergence of the iterations to the solution of the problem for small values of the parameters is investigated. The solution of the linearized problem is obtained in a closed form for a small depth of the discharge and small width of the channel, which is compared with the solution of the problem in a complete formulation. Graphs of the free surface of the fluid for different values of the parameters, obtained as a result of numerical solution of the nonlinear problem, are presented.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 67–75, January–February, 1977.  相似文献   

6.
In this paper, we study a nonlinear and nonlocal free-boundary dynamics — the Hele-Shaw problem without surface tension when the fluid domain is either bounded or unbounded. The key idea is to use a global quantity, the Cauchy integral of the free boundary, to capture the motion of the boundary. This Cauchy integral is shown to be linear in time. The free boundary at a fixed time is then recovered from its Cauchy integral at that time. The main tool in our analysis isCherednichenko's theorem concerning the inverse properties of the Cauchy integrals.As products of our approach, we establish the short-time existence and uniqueness of classical solutions for analytic initial boundaries. We also show the non-existence of classical solutions for all smooth but non-analytic initial boundaries when there is a sink at either a finite point or at infinity. When the fluid domain is bounded, all solutions except the circular one break down before all the fluid is sucked out from the sink. Regularity results are also obtained when there is a source at a finite point or at infinity.  相似文献   

7.
8.
The solitary water wave problem is to find steady free surface waves which approach a constant level of depth in the far field. The main result is the existence of a family of exact solitary waves of small amplitude for an arbitrary vorticity. Each solution has a supercritical parameter value and decays exponentially at infinity. The proof is based on a generalized implicit function theorem of the Nash–Moser type. The first approximation to the surface profile is given by the “KdV” equation. With a supercritical value of the surface tension coefficient, a family of small amplitude solitary waves of depression with subcritical parameter values is constructed for an arbitrary vorticity.  相似文献   

9.
A weakly nonlocal phase-field model is used to define the surface tension in liquid binary mixtures in terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on the characteristic length that defines the interfacial width. Contrary to previous works suggesting that the surface tension in a phase-field model is fixed, we define the surface tension for a curved interface and far-from-equilibrium conditions as the integral of the free energy excess (i.e., above the thermodynamic component of the free energy) across the interface profile in a direction parallel to the composition gradient. Consequently, the nonequilibrium surface tension can be widely different from its equilibrium value under dynamic conditions, while it reduces to its thermodynamic value for a flat interface at local equilibrium. In nonequilibrium conditions, the surface tension changes with time: during mixing, it decreases as the inverse square root of time, while in the linear regime of spinodal decomposition, it increases exponentially to its equilibrium value, as nonlinear effects saturate the exponential growth. In addition, since temperature gradients modify the steepness of the concentration profile in the interfacial region, they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, leading to diffusiophoresis. We also review results on the nonequilibrium surface tension for a wall-bound pendant drop near detachment, which help to explain a discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart from a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we present new results from phase-field simulations of the motion of an isolated droplet down an incline in gravity, showing that dynamic contact angle hysteresis can be explained in terms of the nonequilibrium surface tension.  相似文献   

10.
We consider singularities in the ElectroHydroDynamic equations. In a regime where we are allowed to neglect surface tension, and assuming that the free surface is given by an injective curve and that either the fluid velocity or the electric field satisfies a certain non-degeneracy condition, we prove that either the fluid region or the gas region is asymptotically a cusp. Our proofs depend on a combination of monotonicity formulas and a non-vanishing result by Caffarelli and Friedman. As a by-product of our analysis we also obtain a special solution with convex conical air-phase which we believe to be new.  相似文献   

11.
12.
We consider the problem of free oscillations of an ideal fluid in a container that has the form of a right circular cylinder with arbitrary axisymmetric bottom in the case where the unperturbed free surface of the fluid is covered by an elastic membrane or plate. Using the expansion in eigenfunctions of an auxiliary spectral problem with a parameter in boundary conditions and the method of decomposition of the domain of meridional cross-section of a container, we obtain an analytic solution of the problem. Individual examples of mechanical systems are considered, for which we construct solutions by using the proposed algorithm, analyze these solutions, and compute the frequencies and forms of oscillations.  相似文献   

13.
A sharp interface problem arising in the flow of two immiscible fluids, slag and molten metal in a blast furnace, is formulated using a two-dimensional model and solved numerically. This problem is a transient two-phase free or moving boundary problem, the slag surface and the slag–metal interface being the free boundaries. At each time step the hydraulic potential of each fluid satisfies the Laplace equation which is solved by the finite element method. The ordinary differential equations determining the motion of the free boundaries are treated using an implicit time-stepping scheme. The systems of linear equations obtained by discretization of the Laplace equations and the equations of motion of the free boundaries are incorporated into a large system of linear equations. At each time step the hydraulic potential in the interior domain and its derivatives on the free boundaries are obtained simultaneously by solving this linear system of equations. In addition, this solution directly gives the shape of the free boundaries at the next time step. The implicit scheme mentioned above enables us to get the solution without handling normal derivatives, which results in a good numerical solution of the present problem. A numerical example that simulates the flow in a blast furnace is given.  相似文献   

14.
An analytic solution to the problem of motion of a slender rigid body in a semi-infinite domain of a compressible fluid is obtained for the case when the body moves in parallel to the free surface at a constant velocity. This problem is similar to the problem of motion of a hydrofoil ship whose wing-like device allows it to lift its hull above the water surface and to decrease the friction and drag forces limiting the speed of usual ships. During its motion in water, a hydrofoil produces a lift force. The obtained analytic solution allows one to derive explicit expressions for the drag force and for the lift force in the limiting cases of relatively small and large depths. When depth is small, the drag force is greater than that in an infinite medium, since the wave drag is additionally evolved. When the velocity increases and approaches the sound velocity, the forces exerted on the body increase without limit, which is typical for a linear formulation of the problem.  相似文献   

15.
The unsteady motion of an ideal incompressible fluid with a free surface, developing from a state of rest, is considered. The flow is assumed to be irrotational, continuous and two-dimensional; it may be the result either of an initial disturbance of the free boundary or of a given boundary pressure distribution. The rigid boundaries of the flow region are fixed, and the free surface does not cross them at any time during the motion. The fluid is located in a uniform gravity force field and there is no surface tension. A method which in the case of localized roughness of the bottom makes it possible to find the shape of the free surface at any moment of time with predetermined accuracy is proposed. The method involves reducing the initial linear problem to a Volterra integral equation of the second kind, the kernel of this equation being a nonlocal operator. This operator has a smoothing effect, which makes it possible to reduce the solution of the initial problem to the solution of an infinite, perfect lyregular system of Volterra integral equations for a denumerable set of auxiliary functions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 111–119, November–December, 1989.The author is grateful to I. V. Sturova and B. E. Protopopov for useful discussions and criticism.  相似文献   

16.
A mixed boundary element and finite element numerical algorithm for the simultaneous prediction of the electric fields, viscous flow fields, thermal fields and surface deformation of electrically conducting droplets in an electrostatic field is described in this paper. The boundary element method is used for the computation of the electric potential distribution. This allows the boundary conditions at infinity to be directly incorporated into the boundary integral formulation, thereby obviating the need for discretization at infinity. The surface deformation is determined by solving the normal stress balance equation using the weighted residuals method. The fluid flow and thermal fields are calculated using the mixed finite element method. The computational algorithm for the simultaneous prediction of surface deformation and fluid flow involves two iterative loops, one for the electric field and surface deformation and the other for the surface tension driven viscous flows. The two loops are coupled through the droplet surface shapes for viscous fluid flow calculations and viscous stresses for updating the droplet shapes. Computing the surface deformation in a separate loop permits the freedom of applying different types of elements without complicating procedures for the internal flow and thermal calculations. Tests indicate that the quadratic, cubic spline and spectral boundary elements all give approximately the same accuracy for free surface calculations; however, the quadratic elements are preferred as they are easier to implement and also require less computing time. Linear elements, however, are less accurate. Numerical simulations are carried out for the simultaneous solution of free surface shapes and internal fluid flow and temperature distributions in droplets in electric fields under both microgravity and earthbound conditions. Results show that laser heating may induce a non-uniform temperature distribution in the droplets. This non-uniform thermal field results in a variation of surface tension along the surface of the droplet, which in turn produces a recirculating fluid flow in the droplet. The viscous stresses cause additional surface deformation by squeezing the surface areas above and below the equator plane.  相似文献   

17.
We present a numerical model for predicting the instability and breakup of viscous microjets of Newtonian fluid. We adopt a one‐dimensional slender‐jet approximation and obtain the equations of motion in the form of a pair of coupled nonlinear partial differential equations (PDEs). We solve these equations using the method of lines, wherein the PDEs are transformed to a system of ordinary differential equations for the nodal values of the jet variables on a uniform staggered grid. We use the model to predict the instability and satellite formation in infinite microthreads of fluid and continuous microjets that emanate from an orifice. For the microthread analysis, we take into account arbitrary initial perturbations of the free‐surface and jet velocity, as well as Marangoni instability that is due to an arbitrary variation in the surface tension. For the continuous nozzle‐driven jet analysis, we take into account arbitrary time‐dependent perturbations of the free‐surface, velocity and/or surface tension as boundary conditions at the nozzle orifice. We validate the model using established computational data, as well as axisymmetric, volume of fluid (VOF) computational fluid dynamic (CFD) simulations. The key advantages of the model are its ease of implementation and speed of computation, which is several orders of magnitude faster than the VOF CFD simulations. The model enables rapid parametric analysis of jet breakup and satellite formation as a function of jet dimensions, modulation parameters, and fluid rheology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Non-Newtonian fluid mechanics affords an excellent opportunity for studying many of the mathematical methods which have been developed to analyse non-linear problems in mechanics. The flow of an incompressible fluid of grade three past an infinite porous flat plate, subject to suction at the plate, is governed by a non-linear differential equation that is particularly well suited to demonstrate the power and usefulness of three such techniques. We establish an existence theorem using shooting methods. Next, we investigate the problem using a perturbation analysis. It is not clear that the perturbation solution converges and thus may not be the appropriate solution for a certain range of a material constant (which is not the perturbation parameter). Finally, we employ a numerical method which is particularly suited to the problem in question.  相似文献   

19.
An explicit formulation to study nonlinear waves interacting with a submerged body in an ideal fluid of infinite depth is presented. The formulation allows one to decompose the nonlinear wave–body interaction problem into body and free‐surface problems. After the decomposition, the body problem satisfies a modified body boundary condition in an unbounded fluid domain, while the free‐surface problem satisfies modified nonlinear free‐surface boundary conditions. It is then shown that the nonlinear free‐surface problem can be further reduced to a closed system of two nonlinear evolution equations expanded in infinite series for the free‐surface elevation and the velocity potential at the free surface. For numerical experiments, the body problem is solved using a distribution of singularities along the body surface and the system of evolution equations, truncated at third order in wave steepness, is then solved using a pseudo‐spectral method based on the fast Fourier transform. A circular cylinder translating steadily near the free surface is considered and it is found that our numerical solutions show excellent agreement with the fully nonlinear solution using a boundary integral method. We further validate our solutions for a submerged circular cylinder oscillating vertically or fixed under incoming nonlinear waves with other analytical and numerical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The Nusselt solution for the flow of a viscous incompressible fluid with a free surface down an inclined plane is at best marginally stable, i.e., the linearization has essential spectrum at least up to the imaginary axis. Nevertheless, using a renormalization group approach here we establish the stability of the Nusselt solution in the full nonlinear system in case of linear stability by proving the self-similar decay of spatially localized perturbations. The asymptotic decay for is similar to the dynamics of localized perturbations of the trivial solution in the Burgers equation on the real line which is the amplitude equation of the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号