首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The present note is a continuation of the author??s effort to study the existence of continuously differentiable solutions to the semi-implicit system of differential equations (1) $$f(x^{\prime}(t)) = g(t, x(t))$$ (2) $$\quad x(0) = x_0,$$ where
  • ${\quad\Omega_g \subseteq \mathbb{R} \times\mathbb{R}^n}$ is an open set containing (0, x 0) and ${g:\Omega_g \rightarrow\mathbb{R}^n}$ is a continuous function,
  • ${\quad\Omega_f \subseteq \mathbb{R}^n}$ is an open set and ${f:\Omega_f\rightarrow\mathbb{R}^n}$ is a continuous function.
  • The transformation of (1)?C(2) into a solvable explicit system of differential equations is trivial if f is locally injective around an element ${\gamma\in \Omega_f\cap f^{-1}(g(0,x_0))}$ . In this paper, we study (1)?C(2) when such a translation is not possible because of the inherent multivalued nature of f ?1.  相似文献   

    2.
    We study the nonhomogeneous boundary value problem for Navier–Stokes equations of steady motion of a viscous incompressible fluid in a two-dimensional, bounded, multiply connected domain ${\Omega = \Omega_1 \backslash \overline{\Omega}_2, \overline\Omega_2\subset \Omega_1}$ . We prove that this problem has a solution if the flux ${\mathcal{F}}$ of the boundary value through 2 is nonnegative (inflow condition). The proof of the main result uses the Bernoulli law for a weak solution to the Euler equations and the one-sided maximum principle for the total head pressure corresponding to this solution.  相似文献   

    3.
    For a domain ${\Omega \subset \mathbb{R}^{N}}$ we consider the equation $$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$ with zero Dirichlet boundary conditions and ${p\in(2, 2^*)}$ . Here ${V \geqq 0}$ and Q n are bounded functions that are positive in a region contained in ${\Omega}$ and negative outside, and such that the sets {Q n  > 0} shrink to a point ${x_0 \in \Omega}$ as ${n \to \infty}$ . We show that if u n is a nontrivial solution corresponding to Q n , then the sequence (u n ) concentrates at x 0 with respect to the H 1 and certain L q -norms. We also show that if the sets {Q n  > 0} shrink to two points and u n are ground state solutions, then they concentrate at one of these points.  相似文献   

    4.
    We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu|\nabla_{x} u|^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .  相似文献   

    5.
    The aim of the paper is to give a formulation for the initial boundary value problem of parabolic-hyperbolic type in the case of nonhomogeneous boundary data a 0. Here u=u(x,t)∈?, with (x,t)∈Q=Ω× (0,T), where Ω is a bounded domain in ? N with smooth boundary and T>0. The function b is assumed to be nondecreasing (allowing degeneration zones where b is constant), Φ is locally Lipschitz continuous and gL (Ω× (0,b)). After introducing the definition of an entropy solution to the above problem (in the spirit of Otto [14]), we prove uniqueness of the solution in the proposed setting. Moreover we prove that the entropy solution previously defined can be obtained as the limit of solutions of regularized equations of nondegenerate parabolic type (specifically the diffusion function b is approximated by functions b ? that are strictly increasing). The approach proposed for the hyperbolic-parabolic problem can be used to prove similar results for the class of hyperbolic-elliptic boundary value problems of the form again in the case of nonconstant boundary data a 0.  相似文献   

    6.
    Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

    7.
    In this paper, we establish the local well-posedness for the Cauchy problem of a simplified version of hydrodynamic flow of nematic liquid crystals in ${\mathbb{R}^3}$ for any initial data (u 0, d 0) having small ${L^{3}_{\rm uloc}}$ -norm of ${(u_{0}, \nabla d_{0})}$ . Here ${L^{3}_{\rm uloc}(\mathbb{R}^3)}$ is the space of uniformly locally L 3-integrable functions. For any initial data (u 0, d 0) with small ${\|(u_0, \nabla d_0)\|_{L^{3}(\mathbb{R}^3)}}$ , we show that there exists a unique, global solution to the problem under consideration which is smooth for t > 0 and has monotone deceasing L 3-energy for ${t \geqq 0}$ .  相似文献   

    8.
    In this notes we consider the stationary Stokes system in a bounded, connected, three-dimensional smooth domain, with homogeneous Dirichlet boundary condition. Proofs also apply to the n-dimensional case, and to other boundary conditions, like Navier-slip ones. We say here that a solution is classical if all derivatives appearing in the equations are continuous up to the boundary. It is well known, for long time, that solutions of the Stokes system are classical if the external forces belong to the H?lder space \({C^{0,\; \lambda}(\bar{\Omega})}\) . It is also well known that, in general, solutions are not classical in the presence of continuous external forces. Hence, a very challenging problem is to find Banach spaces, strictly containing the H?lder spaces \({C^{0,\; \lambda}(\bar{\Omega})}\) such that solutions to the Stokes problem corresponding to forces in the above space are classical. We prove this result for external forces in a suitable functional space, denoted \({{\rm C}_*(\bar{\Omega})}\) , introduced in references Beirão da Veiga (On the solutions in the large of the two-dimensional flow of a non-viscous incompressible fluid, 1982) and Beirão da Veiga (J Differ Equ 54(3):373–389, 1984) in connection with the Euler equations.  相似文献   

    9.
    The steady mixed convection boundary-layer flow on a vertical circular cylinder embedded in a porous medium filled by a nanofluid is studied for both cases of a heated and a cooled cylinder. The governing system of partial differential equations is reduced to ordinary differential equations by assuming that the surface temperature of the cylinder and the velocity of the external (inviscid) flow vary linearly with the axial distance x measured from the leading edge. Solutions of the resulting ordinary differential equations for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction ${\phi}$ , the mixed convection or buoyancy parameter ?? and the curvature parameter ??. Results are presented for the specific case of copper nanoparticles. A critical value ?? c of ?? with ?? c <?0 is found, with the values of | ?? c| increasing as the curvature parameter ?? or nanoparticle volume fraction ${\phi}$ is increased. Dual solutions are seen for all values of ?? >??? c for both aiding, ?? >?0 and opposing, ?? <?0, flows. Asymptotic solutions are also determined for both the free convection limit ${(\lambda \gg 1)}$ and for large curvature parameter ${(\gamma \gg 1)}$ .  相似文献   

    10.
    For every ${\varepsilon > 0}$ , we consider the Green’s matrix ${G_{\varepsilon}(x, y)}$ of the Stokes equations describing the motion of incompressible fluids in a bounded domain ${\Omega_{\varepsilon} \subset \mathbb{R}^d}$ , which is a family of perturbation of domains from ${\Omega\equiv \Omega_0}$ with the smooth boundary ${\partial\Omega}$ . Assuming the volume preserving property, that is, ${\mbox{vol.}\Omega_{\varepsilon} = \mbox{vol.}\Omega}$ for all ${\varepsilon > 0}$ , we give an explicit representation formula for ${\delta G(x, y) \equiv \lim_{\varepsilon\to +0}\varepsilon^{-1}(G_{\varepsilon}(x, y) - G_0(x, y))}$ in terms of the boundary integral on ${\partial \Omega}$ of ${G_0(x, y)}$ . Our result may be regarded as a classical Hadamard variational formula for the Green’s functions of the elliptic boundary value problems.  相似文献   

    11.
    We prove various decay bounds on solutions (f n : n > 0) of the discrete and continuous Smoluchowski equations with diffusion. More precisely, we establish pointwise upper bounds on n ? f n in terms of a suitable average of the moments of the initial data for every positive ?. As a consequence, we can formulate sufficient conditions on the initial data to guarantee the finiteness of ${L^p(\mathbb{R}^d \times [0, T])}$ norms of the moments ${X_a(x, t) := \sum_{m\in\mathbb{N}}m^a f_m(x, t)}$ , ( ${\int_0^{\infty} m^a f_m(x, t)dm}$ in the case of continuous Smoluchowski’s equation) for every ${p \in [1, \infty]}$ . In previous papers [11] and [5] we proved similar results for all weak solutions to the Smoluchowski’s equation provided that the diffusion coefficient d(n) is non-increasing as a function of the mass. In this paper we apply a new method to treat general diffusion coefficients and our bounds are expressed in terms of an auxiliary function ${\phi(n)}$ that is closely related to the total increase of the diffusion coefficient in the interval (0, n].  相似文献   

    12.
    In this paper, we prove a Hausdorff measure estimate for the free boundaries of subsolutions of fully nonlinear and quasilinear equations of the type \({F(D^2u,x)\geqq f(x)}\) and \({{\rm div}\,A(x,\nabla u)\geqq \mu}\) where \({f \in L^{q}, q >N}\) and μ is a signed Radon measure with some appropriate growth condition. Gradient estimates for nonnegative harmonic functions with bounded normal derivatives along the boundary obtained by Caffarelli and Salsa (Geometric Approach to Free Boundary Problems, 2005) are extended to the context of inhomogeneous problems involving fully nonlinear and p-Laplace equations. As an application, Lipschitz regularity is obtained for one phase solutions of inhomogeneous nonlinear free boundary problems.  相似文献   

    13.
    The goal of this paper is to reconsider the classical elliptic system rot vf, div vg in simply connected domains with bounded connected boundaries (bounded and exterior sets). The main result shows solvability of the problem in the maximal regularity regime in the L p -framework taking into account the optimal/minimal requirements on the smoothness of the boundary. A generalization for the Besov spaces is studied, too, for \({{\bf f} \in \dot B^s_{p,q}(\Omega)}\) for \({-1+\frac 1p < s < \frac 1p}\) . As a limit case we prove the result for \({{\bf f} \in \dot B^0_{3,1}(\Omega)}\) , provided the boundary is merely in \({B^{2-1/3}_{3,1}}\) . The dimension three is distinguished due to the physical interpretation of the system. In other words we revised and extended the classical results of Friedrichs (Commun Pure Appl Math 8;551–590, 1955) and Solonnikov (Zap Nauch Sem LOMI 21:112–158, 1971).  相似文献   

    14.
    This paper studies the boundary-value problem arising from the behaviour of a fluid occupying the region -1≦x≦1 between two rotating disks, rotating about a common axis perpendicular to their planes when the disks are rotating with the same speed Ω0 but in the opposite sense. The equations which describe the axially symmetric similarity solutions of this problem are $$\varepsilon H^{iv} + HH''' + GG' = 0$$ $$\varepsilon G'' + HG' - H'G = 0$$ with the boundary conditions $$H( \pm 1) = H'( \pm 1) = 0$$ $$G( - 1) = - 1,{\text{ }}G(1) = 1$$ where ?=v/2Ω0 and v is the kinematic viscosity. The existence of an odd solution is established. This particular solution satisfies many special conditions, for example, G′ (x, ?)>0. Moreover, precise estimates are obtained on the size and behaviour of the solution as ? ↓ 0.  相似文献   

    15.
    16.
    We prove existence results concerning equations of the type \({-\Delta_pu=P(u)+\mu}\) for p > 1 and F k [?u] = P(u) + μ with \({1 \leqq k < \frac{N}{2}}\) in a bounded domain Ω or the whole \({\mathbb{R}^N}\) , where μ is a positive Radon measure and \({P(u)\sim e^{au^\beta}}\) with a > 0 and \({\beta \geqq 1}\) . Sufficient conditions for existence are expressed in terms of the fractional maximal potential of μ. Two-sided estimates on the solutions are obtained in terms of some precise Wolff potentials of μ. Necessary conditions are obtained in terms of Orlicz capacities. We also establish existence results for a general Wolff potential equation under the form \({u={\bf W}_{\alpha, p}^R[P(u)]+f}\) in \({\mathbb{R}^N}\) , where \({0 < R \leqq \infty}\) and f is a positive integrable function.  相似文献   

    17.
    Let A be a positive self-adjoint elliptic operator of order 2m on a bounded open set Ω ?? k . We consider the variational eigenvalue problem (P) $$\mathcal{A}u = \lambda r{\text{(}}x{\text{)}}u,{\text{ }}x \in \Omega ,$$ , with Dirichlet or Neumann boundary conditions; here the “weight” r is a real-valued function on Ω which is allowed to change sign in Ω or to be discontinuous. Such problems occur naturally in the study of many nonlinear elliptic equations. In an earlier work [Trans. Amer. Math. Soc. 295 (1986), pp. 305–324], we have determined the leading term for the asymptotics of the eigenvalues λ of (P). In the present paper, we obtain, under more stringent assumptions, the corresponding remainder estimates. More precisely, let N ±(λ) be the number of positive (respectively, negative) eigenvalues of (P) less than λ>0 (respectively, greater than λ<0); set r ± = max (±r, 0) and \(\Omega _ \pm = {\text{\{ }}x \in \Omega :r{\text{(}}x{\text{)}} \gtrless {\text{0\} }}\) . We show that $$N^ \pm {\text{(}}\lambda {\text{) = }}\mathop \smallint \limits_{\Omega _ \pm } {\text{(}}\lambda r{\text{(}}x{\text{))}}^{\frac{k}{{{\text{2}}m}}} {\text{ }}\mu \prime _\mathcal{A} {\text{(}}x{\text{) }}dx + 0{\text{(}}\left| \lambda \right|^{\frac{{k - 1}}{{{\text{2}}m}} + \delta } {\text{) as }}\lambda \to \pm \infty {\text{,}}$$ , where δ>0 and μ A (x) is the Browder-Gårding density associated with the principal part of A. How small δ can be chosen depends on the “regularity” of the leading coefficients of A, r ±, and of the boundary of Ω ±. These results seem to be new even for positive weights.  相似文献   

    18.
    In this work we develop a systematic geometric approach to study fully nonlinear elliptic equations with singular absorption terms, as well as their related free boundary problems. The magnitude of the singularity is measured by a negative parameter (γ - 1), for 0 < γ < 1, which reflects on lack of smoothness for an existing solution along the singular interface between its positive and zero phases.We establish existence as well as sharp regularity properties of solutions. We further prove that minimal solutions are non-degenerate and we obtain fine geometric-measure properties of the free boundary ${\mathfrak{F} = \partial{u > 0}}$ . In particular, we show sharp Hausdorff estimates which imply local finiteness of the perimeter of the region {u > 0} and the ${\mathcal{H}^{n-1}}$ almost-everywhere weak differentiability property of ${\mathfrak{F}}$ .  相似文献   

    19.
    This paper investigates the asymptotic behavior of the solutions of the Fisher-KPP equation in a heterogeneous medium, $$\partial_t u = \partial_{xx} u + f(x,u),$$ associated with a compactly supported initial datum. A typical nonlinearity we consider is ${f(x,u) = \mu_0 (\phi (x)) u(1-u)}$ , where??? 0 is a 1-periodic function and ${\phi}$ is a ${\mathcal{C}^1}$ increasing function that satisfies ${\lim_{x \to+\infty}\phi (x) = +\infty}$ and ${\lim_{x \to +\infty}\phi' (x) =0}$ . Although quite specific, the choice of such a reaction term is motivated by its highly heterogeneous nature. We exhibit two different behaviors for u for large times, depending on the speed of the convergence of ${\phi}$ at infinity. If ${\phi}$ grows sufficiently slowly, then we prove that the spreading speed of u oscillates between two distinct values. If ${\phi}$ grows rapidly, then we compute explicitly a unique and well determined speed of propagation w ??, arising from the limiting problem of an infinite period. We give a heuristic interpretation for these two behaviors.  相似文献   

    20.
    Attractors of Reaction Diffusion Systems on Infinite Lattices   总被引:1,自引:0,他引:1  
    In this paper, we study global attractors for implicit discretizations of a semilinear parabolic system on the line. It is shown that under usual dissipativity conditions there exists a global (Z u ,Z ρ )-attractor $A$ in the sense of Babin-Vishik and Mielke-Schneider. Here Z ρ is a weighted Sobolev space of infinite sequences with a weight that decays at infinity, while the space Z u carries a locally uniform norm obtained by taking the supremum over all Z ρ norms of translates. We show that the absorbing set containing $A$ can be taken uniformly bounded (in the norm of Z u ) for small time and space steps of the discretization. We establish the following upper semicontinuity property of the attractor $A$ for a scalar equation: if $A$ N is the global attractor for a discretization of the same parabolic equation on the finite segment [?N,N] with Dirichlet boundary conditions, then the attractors $A$ N (properly embedded into the space Z u ) tend to $A$ as N→∞ with respect to the Hausdorff semidistance generated by the norm in Z ρ . We describe a possibility of “embedding” certain invariant sets of some planar dynamical systems into the global attractor $A$ . Finally, we give an example in which the global attractor $A$ is infinite-dimensional.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号