首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The problem of steady, laminar, natural convective flow of a viscous fluid in an inclined enclosure with partitions is considered. Transverse gradient of temperature is applied on the two opposing regular walls of the inclined enclosure while the other walls are maintained adiabatic. The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on the finite volume method is obtained. Representative results illustrating the effects of the enclosure inclination angle and the degree of irregularity on the contour maps of the streamlines and temperature are reported and discussed. In addition, results for the average Nusselt number at the heated wall of the enclosure and the difference of extreme stream-function values are presented and discussed for various Rayleigh numbers, inclination angles and dimensionless partition heights.  相似文献   

2.
3.
The flow and heat transfer in partially heated and partially cooled cavities were numerically analyzed. Using the control volume approach, a computer program based on SIMPLE algorithm was developed. A square enclosure with variable size heater and cooler on the vertical walls was considered. Computations were carried out to investigate the effects of heater and cooler size on the heat transfer rate. It was observed that for a given cooler size, the mean Nusselt number decreases with increasing heater size. On the other hand, for a given heater size, the mean Nusselt number increases with increasing cooler size. For all Rayleigh numbers considered, the same behavior was observed.
Natürliche Konvektion in geschlossenen Räumen mit partieller Heizung und Kühlung der Wände
Zusammenfassung Es wurde ein numerisches Modell zur Analyse des Strömungs- und Wärmeübergangsverhaltens in teilweise beheizten und gekühlten Hohlräumen entwickelt und unter Verwendung des Kontrollvolumenprinzips und des Algorithmus SIMPLE als Computer-Programm formuliert. Der Hohlraum ist rechteckig und die variablen Heiz- und Kühlflächen befinden sich auf gegenüberliegenden Vertikalseiten. Hauptziel der Berechnungen war es, den Einfluß der variablen Heiz- und Kühlflächen auf den Wärmeübergang zu ermitteln. Für eine bestimmte Kühlergröße zeigte sich eine Abnahme der gemittelten Nußelt-Zahl mit zunehmender Heizfläche. Andererseits — bei gegebener Heizfläche — stieg die Nußelt-Zahl mit der Kühlfläche an. Dieses Verhalten wurde bei allen untersuchten Rayleighzahlen gefunden.

Nomenclature g gravitational acceleration - H height of cavity - k thermal conductivity of fluid - l C cooler size - l H heater size - mean Nusselt number - Nu y local Nusselt number - P pressure - Pr Prandtl number - Ra Rayleigh number (Ra = gH 3(T HT C)/()) - T temperature - T C temperature of cold surface - T H temperature of hot surface - T R reference temperature (T R = (T C +T H)/2) - u velocity component inx-direction - x horizontal axis - v velocity component iny-direction - y vertical axis Greek symbols thermal diffusivity - thermal expansion coefficient - density of fluid - stream function - kinematic viscosity  相似文献   

4.
Laminar natural convection and conduction in shallow enclosures having multiple partitions with finite thickness and conductivity have been studied. An approximate analytical solution is obtained by using the parallel flow approximation in horizontal shallow enclosures heated isothermally at two vertical ends while adiabatic on horizontal end walls. The same problem is solved also using a finite difference formulation and the control volume method. The study covers the range ofRa from 105 to 107,A=H/L0.2, C=1/L from 0 to 0.15, and the thermal conductivity ratio of partition to fluidk r from 10–4 to 1011. The partition numberN was varied from 0 to 5. The Prandtl number was 0.72 (for air). The results are reduced in terms ofNu as a function ofRa, k, and various geometrical parameters (A, C). The streamlines and isotherms are produced to visualize the flow and temperature fields.Es wird der kombinierte Einfluß von laminarer Naturkonvektion und Leitung in flachen Behältern mit mehreren Trennwänden endlicher Dicke und Leitfähigkeit untersucht. Eine analytische Näherungslösung läßt sich über die Parallelstromapproximation bezüglich horizontaler flacher Behälter finden, deren zwei vertikale Begrenzungswände isotherm beheizt sind, während die Horizontalflächen adiabat sein sollen. Das selbe Problem wird unter Verwendung eines Differenzverfahrens und der Kontrollvolumen-Methode gelöst und zwar für die Parameterbereiche 105 Ra 107;A=H/L<0.2;>C=1/L 0.15; 10–4kr 1011, wobei der letzte Parameter das Verhältnis der Leitfähigkeit von Trennwand und Fluid bezeichnet. Die Zahl der TrennwändeN variierte Zwischen 0 und 5, die Prandtl-Zahl betrug 0.72 (Luft). Die Ergebnisse werden in dimensionsloser Form gemäß der BeziehungNu =f (Ra, k r ,A, C) mitgeteilt bzw. durch Diagrammdarstellungen der Stromlinien- und Isothermenfelder veranschaulicht.Financial support from the Natural Sciences and Engineering Council Canada is acknowledged. Financial support to A. Kangni from Canadian Fellowship Program For French Speaking Countries is also acknowledged.  相似文献   

5.
The flow and heat transfer in enclosures with conducting multiple partitions and side walls were numerically analyzed. Side walls were kept at isothermal conditions, while top and bottom walls were insulated. Employing control volume approach, a computer program based on SIMPLE algorithm was developed. Computations were carried out to investigate the effects of Rayleigh number, number of partitions and cavity aspect ratios on the heat transfer rate. The mean Nusselt numbers were calculated from computed temperature fields. It was observed that, the mean Nusselt number decreases with increasing partition number. It is inversely proportional to (1+N) for N≤4. For all partition numbers, the mean Nusselt number increases with increasing Rayleigh number. On the other hand, the cavity aspect ratio does not affect the mean Nusselt number to a considerable extent for considered aspect ratios in this study.  相似文献   

6.
This paper has dealt with the natural convection heat transfer characteristics of microemulsion slurry composed of water, fine particles of phase change material (PCM) in rectangular enclosures. The microemulsion slurry exhibited non-Newtonian pseudoplastic fluid behavior, and the phase changing process can show dramatically variations in both thermophysical and rheological properties with temperature. The experiments have been carried out separately in three subdivided regions in which the state of PCM in microemulsion is in only solid phase, two phases (coexistence of solid and liquid phases) or only liquid phase. The complicated heat transfer characteristics of natural convection have appeared in the phase changing region. The phase change phenomenon of the PCM enhanced the heat transfer in natural convection, and the Nusselt number was generalized by introducing a modified Stefan number. However, the Nusselt number did not show a linear output with the height of the enclosure, since a top conduction lid or stagnant layer was induced over a certain height of the enclosure. The Nusselt number increased with a decrease in aspect ratio (width/height of the rectangular enclosure) even including the side-wall effect. However, the microemulsion was more viscous while the PCM was in the solid phase, the side-wall effect on heat transfer was greater for the PCM in the solid region than that for the PCM in the liquid region. The correlation generalized for the PCM in a single phase is $ Nu = 1/3(1 - C_1 )Ra^{{1 \over {3.5n + 1}}} , $ where C 1 = e –0.09AR for the PCM in solid phase and C 1 = e –0.33AR for the PCM in liquid phase. For the PCM in the phase changing region, the correlation can be expressed as $ Nu = CRa^{{1 \over {7n + 2}}} Ste^{ - (1.9 - 1.65n)} , $ where C = 1.22 – 0.035AR for AR > 10 and C = 0.55 – 16.4e –1.1AR for AR < 10. The enclosure height used in the present experiments was varied from H = 5.5 [mm] to 30.4 [mm] at the fixed width W = 120 [mm] and depth D = 120 [mm]. The experiments were done in the range of modified Rayleigh number 7.0 × 102Ra ≤ 3.0 × 106, while the enclosure aspect ratio AR varied from 3.9 to 21.8.  相似文献   

7.
8.
The heat transfer by natural convection in vertical and inclined rectangular enclosures with fins attached to the heated wall is numerically studied using the energy and Navier-Stokes equations with the Boussinesq approximation. The range of study covers 104Ra2×105,A=H/L=2.5 to ,B=l/L=0 to 1,C=h/L=0.25 to 2 andPr=0.72. The inclination angle from the vertical was from 0 to 60 degree. The variation of the local Nusselt numberNu loc along the enclosure height and the average Nusselt numberNu as a function ofRa are computed. Streamlines and isotherms in the enclosure are produced. The results show thatB is an important parameter affecting the heat transfer through the cold wall of the enclosure. The heat transfer is reduced for decreasingC and it passes from a maximum for an inclination angle. The results show that the heat transfer can generally be reduced using appropriate geometrical parameters in comparison with a similar enclosure without fins.Die Wärmeübertragung bei freier Konvektion in vertikalen und geneigten rechtwinkligen Behältern mit Rippen an den beheizten Wänden wird unter Verwendung der Energie- und Navier-Stokes-Gleichungen sowie der Boussinesq-Approximation numerisch untersucht. Der Bereich der Studie liegt bei 104Ra2·105,A=H/L=2,5 bis ,B=l/L=0 bis 1,C=h/L=0,25 bis 2 undPr=0.72. Der Neigungswinkel der Wand liegt zwischen 0 und 60 Grad. Die Veränderung der lokalen Nusselt-Zahl entlang der Höhe der Behälterwände und die mittlere Nusselt-Zahl in Abhängigkeit derRa-Zahl werden berechnet. Strömungslinien und Isothermen werden im Behälter erzeugt. Die Ergebnisse zeigen, daßB ein wichtiger Parameter für die Wärmeübertragung an der nicht beheizten Wand des Behälters ist. Die übertragene Wärmemenge verringert sich mit abnehmendemC und durchschreitet ein Maximum für eine bestimmte Wandneigung. Die Ergebnisse zeigen, daß im Vergleich zu einer Anordnung ohne Rippen, die Wärmeübertragung bei geeigneten geometrischen Parametern allgemein reduziert werden kann.  相似文献   

9.
The natural convection heat transfer in inclined rectangular enclosures with perfectly conducting fins attached to the heated wall is numerically studied. The parameters governing this problem are the Rayleigh number (102Ra≤2×105), the aspect ratio of the enclosures (2.5≤A=H′/L′≤∞), the dimensionless lengths of the partitions (0≤B=?′/L′≤1), the aspect ratio of micro-cavities (AC=h′/L′≤0.33), the inclination angle (0≤φ≤60°) and the Prandtl number (Pr=0.72). The results indicate that the heat transfer through the cover is considerably affected by the presence of the fins. At low Rayleigh numbers, the heat transfer regime is dominated by conduction. When B≈0.75 and C≈0.33, the heat transfer through the cold wall decreases considerably. This trend is enhanced when the enclosure is inclined. Useful engineering correlations are derived for practical applications.  相似文献   

10.
Building elements represented by square vertical enclosures encircled with finite walls or with centered solid body, could maintain the equivalent fluid volumes through the volume ratio scale. Present work aims to investigate the fluid flow and heat transfer in these two building elements. Complete two-dimensional numerical simulation of the conjugate heat conduction and natural convection occurring in both enclosures is carried out. An analytical expression for the minimum size of the inserted body at which the body begins to suppress the natural convection flow is proposed and validated by the numerical results. The fluid flow and heat transfer characteristics are analyzed through the streamlines, heatlines, and total heat transfer rates across both enclosures. Results reveal that heat transfer rates across both enclosures are complex functions of the volume ratio scale, Rayleigh number, and the relative thermal conductivity.  相似文献   

11.
室内轰燃预测方法研究   总被引:10,自引:0,他引:10  
回顾总结了目前常用的室内轰燃预测方法 ;提出了一种预测轰燃的新方法轰燃综合预测法 ,对这一方法的有效性进行了试验验证。结果表明 :由于室内火灾受建筑材料热惯性、开口通风因子、燃料释热速率和房间内部尺寸等多种因素影响 ,传统轰燃预测方法存在多方面的局限性 ,而轰燃综合预测法预测的结果与试验结果比较吻合。  相似文献   

12.
The present work deals with the development and application of numerical models for the simulation of solidification problems liquid/solid taking diffusion and convection into account. For the calculation of the thermal coupled flow process the finite element method is applied. In order to improve the numerical stability of the free convection problems, the streamline-upwind/Petrov–Galerkin method is used. Solidification processes are moving boundary problems. Three different models are set up which consider latent heat at the solidification front respectively in the mixed zone during the phase transition. Moreover, numerical methods are investigated in order to describe the behaviour of the flow at the boundary of the moving phase. Three examples serve illustrations; the technical example – casting of a transport and storage container – was provided by the company Siempelkamp Gießerei GmbH.  相似文献   

13.
In this study, natural convection in non-rectangular enclosures is analyzed numerically. Streamlines and isotherms are presented for different triangular enclosures with different boundary conditions and Rayleigh numbers. Mean Nusselt numbers on hot walls are also calculated in order to make comparisons between different cases. The solutions are obtained for different aspect ratios where boundary conditions represent the wintertime heating of an attic space. This made possible to investigate the effect of aspect ratio on natural convection. In this study, quarter circular enclosure, which is very similar to right triangles, is also examined. Consequently, we had the opportunity to analyze how shape changes affect the flow pattern. The results of the calculations are compared with the similar enclosures and boundary conditions.  相似文献   

14.
In this work, the magnetohydrodynamics (MHD) natural convection heat transfer problem inside a porous medium filled with inclined rectangular enclosures is investigated numerically. The boundary conditions selected on the enclosure are two adiabatic and two isothermal walls. The governing equations, continuity, and Forchheimer extension of the Darcy law and energy are transformed into dimensionless forms by using a set of suitable variables, and then solved by using a finite difference scheme. The governing parameters are the magnetic influence number, the Darcy Rayleigh number, the inclination angle, and the aspect ratio of the enclosure. It is found that the magnetic influence number and the inclination angle have pronounced effects on the fluid flow and heat transfer in porous media-filled enclosures.  相似文献   

15.
16.
17.
采用二阶全展开ETG分裂步有限元方法,通过对流动拓扑的详细分析,在排除网格密度影响的基础上,结合二分法给出封闭方腔内空气和水两种典型流体自然对流发生第一次分岔时的临界Rayleigh数。计算结果表明,该方法可用于进行不同Prandtl数条件下方腔内自然对流流动第一次分岔的数值预报,可作为后续各阶分岔及转捩数值预报研究的基础。在相应的条件下,封闭方腔内空气比水更容易发生分岔,且空气的流动结构相对于水表现出一定的倾斜性。  相似文献   

18.
A hybrid numerical-analytical solution for steady-state natural convection in a porous cavity is proposed, based on application of the ideas in the generalized integral transform technique. The integral transformation process reduces the original coupled partial differential equations, for temperature and stream function, into an infinite system of non-linear ordinary differential equations for the transformed potentials, which is adaptively truncated and numerically solved through well-established algorithms. The approach is applied to a vertical rectangular enclosure subjected to uniform internal heat generation. The convergence characteristics of the explicit inversion formulae are illustrated and critical comparisons with previously reported purely numerical solutions are performed.  相似文献   

19.
Agostino Zanardo 《Meccanica》1986,21(2):106-111
Summary The author illustrates the geometry and the kinematics of two articulated systems built up of a set of rigid, rectilinear elements, pin-jointed together. In the first case, we have a kinematic grid which, from its initial closed shape, expands along two directions on an open (or closed) cylindrical surface. In the second case, the kinematic grid expands on a double curvature surface like, for instance, a paraboloid. The characteristics of the two surfaces requires, for a single or double curvature, two different solutions. They have been patented by the National Research Council.
Sommario L'autore presenta la geometria e la cinematica di due sistemi articolati costituiti da un insieme di membri rigidi rettilinei accoppiati rotoidalmente. Nel primo caso si ha una griglia cinematica che, dalla configurazione chiusa iniziale, si può estendere in due direzioni su una superficie cilindrica chiusa (o aperta). Nel secondo caso, la griglia cinematica si estende su una superficie a doppia curvatura, ad esempio un paraboloide. Le caratteristiche delle due superfici richiedono, per i sistemi articolati, due soluzioni diverse. Queste soluzioni sono state brevettate dal C.N.R.


This work is part of the research activity supported by C.N.R. under contract n. PSN 83-098.  相似文献   

20.
Two-dimensional unsteady natural convection in enclosures of arbitrary cross section is considered. The convection equations in the Boussinesq approximation are written in a curvilinear nonorthogonal coordinate system, in which the boundaries of the region investigated coincide with the coordinate lines. The problem is solved numerically in the physical variables on the basis of a multistep, completely implicit finite-difference method with decoupling of the physical processes and space variables. The numerical modeling of the unsteady convection process in a cylindrical enclosure, whose cross section corresponds to part of a circle enclosed between two equal and parallel chords, is examined by way of example.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 29—33, January–February, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号