首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mechanism of the redox reaction of ebselen with superoxide was investigated using both ESR and electrochemical techniques. The reaction with superoxide in aprotic solvents was followed by means of cyclic voltammetry and ESR spin-trapping. A decrease in the oxidation current due to superoxide as a result of the addition of ebselen was clearly observed in the cyclic voltammograms. Ebselen reduced the ESR signal intensity of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-superoxide in a dose-dependent manner. The formation of an amidyl radical in this redox reaction was confirmed by rapid mixing continuous-flow ESR. The selenonate form and the seleninate form of ebselen were identified as the final products of the reaction of ebselen with superoxide. The following mechanism for this redox reaction can be proposed: First, ebselen reacts with superoxide and is converted to an ebselen anion radical; second, the ebselen anion radical reacts with superoxide and is converted to the amidyl radical. Hydrogen abstraction by the amidyl radical occurs and gives both a seleninate form and a selenonate form.  相似文献   

2.
The ion-molecule reactions of the radical cations of vinyl chloride (1), vinyl bromide (2), 1,2-dichloroethene (3), 1,2-dibromoethene (4), 1,1-dichloroethene (5), and 1,1-dibromoethene (6) with methanol (MeOH) and ethanol (EtOH) have been studied by FT-ICR spectrometry. In the case of EtOH as reactant the oxidation of the alcohol to protonated acetaldehyde by a formal hydride transfer to the haloethene radical cation is the main process if not only reaction observed with the exception of the 1,2-dibromoethene radical cation which exhibits slow substitution. In secondary reactions the protonated acetaldehyde transfers the proton to EtOH which subsequently undergoes a well known condensation reaction of EtOH to form protonated diethyl ether. With MeOH as reactant, the 1,2-dihaloethene radical cations of 3.+ and 4.+ exhibit no reaction, while the other haloethene radical cations undergo the analogous reaction sequence of oxidation yielding protonated formaldehyde. Generally, bromo derivatives of haloethene radical cations react predominantly by substitution and chloro derivatives by oxidation. This selectivity can be understood by the thermochemistry of the competing processes which favors substitution of Br while the effect of the halogen substituent on the formal hydride transfer is small. However, the bimolecular rate constants and reaction efficiencies of the total reactions of the haloethene radical cations with both alcohols exhibit distinct differences, which do not follow the exothermicity of the reactions. It is suggested that the substitution reaction as well as the oxidation by formal hydride transfer proceeds by mechanisms which include fast and reversible addition of the alcohol to the ionized double bond of the haloethene radical cation which generates a beta-distonic oxonium ion as the crucial intermediate. This intermediate is energetically excited by the exothermic addition and fragments either directly by elimination of a halogen substituent to complete the substitution process or rearranges by hydrogen migration before dissociation into the protonated aldehyde and a beta-haloethyl radical. Reversible addition and hydrogen migrations within a long lived intermediate is proven experimentally by H/D exchange accompanying the reaction of the radical cations of vinyl chloride (1) and 1,1-dichloroethene (5) with CD3OH. The suggested mechanisms are substantiated by ab initio molecular orbital calculations.  相似文献   

3.
The utility of N-sulfonylimines as radical acceptors was investigated under the different reaction conditions such as the stannyl radical-mediated addition reaction, the triethylborane-mediated tin-free radical reaction, and the zinc-mediated aqueous-medium radical reaction. The alkyl radical addition reaction of N-sulfonylimines proceeded effectively without the activation by Lewis acid. These reactions were successfully extended to one-pot reactions for preparing a wide range of amine derivatives.  相似文献   

4.
[reaction: see text] Tandem carbon-carbon bond-forming reactions were studied by using indium as a single-electron-transfer radical initiator. The radical addition-cyclization-trap reaction of a substrate having a vinyl sulfonamide group and an olefin moiety proceeded smoothly in aqueous media. The radical addition-cyclization reaction of hydrazone gave the functionalized cyclic products.  相似文献   

5.
The open-shell benzoylnitrene radical anion, readily generated by electron ionization of benzoylazide, undergoes unique chemical reactivity with radical reagents and Lewis acids in the gas phase. Reaction with nitric oxide, NO, proceeds by loss of N2 and formation of benzoate ion. This novel reaction is also observed to occur with phenylnitrene anion, forming phenoxide. Similar reactivity was observed in the reaction between benzoylnitrene radical anion and NO2, forming benzoate ion and nitrous oxide. Electronic structure calculations indicate that the reaction has a high-energy barrier that is overcome by the energy released by bond formation. Benzoylnitrene radical anion also transfers oxygen anion to NO and NO2 as well as to CS2 and SO2. In contrast, phenylnitrene anion reacts with carbon disulfide by C+ or CS+ abstraction, forming S- or S2-. Electronic structure calculations indicate that benzoylnitrene in the ground state resembles a slightly polarized benzoate anion, but with a free radical localized on the nitrogen.  相似文献   

6.
Direct generation of a benzyl radical by C-H bond activation of toluenes and the addition reaction of the resulting radical to an electron deficient olefin were developed. The reaction of dimethyl fumarate with toluene in the presence of Et(3)B as a radical initiator at reflux afforded 2-benzylsuccinic acid dimethyl ester in good yield.  相似文献   

7.
A sterically hindered cyclic amine, 4-hydroxy-2,2,6,6-tetramethylpiperidine (HTMP), is converted to the corresponding aminoxyl radical (nitroxide radical), 4-hydroxy-2,2,6,6-tetramethyl piperidine 1-oxyl (TEMPOL radical) as a result of a photocatalytic reaction in TiO2 aqueous suspension. The time profile of the radical formation and the effect of additives, such as SCN-, I-, methanol, and H2O2, on the initial formation rate were measured in order to elucidate the reaction mechanism. The experimental observations indicated that the direct photocatalytic oxidation of HTMP followed by reaction with O2 is the dominant process in the formation of TEMPOL radicals. Electrochemical measurements showed that HTMP is oxidized at 0.7 V (vs NHE), which is consistent with the proposed mechanism. The possibility of other processes, involving reactions with singlet molecular oxygen, superoxide radical, and hydroxyl radical, were excluded from the reaction mechanism.  相似文献   

8.
The concerted mechanism of free radical SH2′ reaction of 2‐substituted allyl chloride was suggested again by inverse secondary α‐deuterium isotope effect. The transition state of free radical SH2′ reaction of allyl chlorides seems to be symmetrical and is not as early as that of a free radical addition reaction.  相似文献   

9.
The hydroxyl radical (OH radical) formation rates from the photo-Fenton reaction in river and rain water samples were determined by using deferoxamine mesylate (DFOM), which makes a stable and strong complex with Fe(III), resulting in a suppression of the photo-Fenton reaction. The difference between the OH radical formation rates with and without added DFOM denotes the rate from the photo-Fenton reaction. The photoformation rates from the photo-Fenton reaction were in the range of 0.7 - 45.8 x 10(-12) and 2.7 - 32.3 x 10(-12) M s(-1) in river and rain water samples, respectively. A strong positive correlation between the OH radical formation rate from the photo-Fenton reaction and the amount of fluorescent matter in river water suggests that fluorescent matter, such as humic substances, plays an important role in the photo-Fenton reaction. In rain water, direct photolysis of hydrogen peroxide was an important source of OH radicals as well as the photo-Fenton reaction. The contributions of the photo-Fenton reaction to the OH radical photoformation rates in river and rain water samples were in the ranges of 2 - 29 and 5 - 38%, respectively. Taking into account the photo-Fenton reaction, 33 - 110 (mean: 80) and 42 - 110 (mean: 84)% of OH radical sources in river and rain water samples, respectively, collected in Hiroshima prefecture were elucidated.  相似文献   

10.
Suitably functionalised carboxylic acids undergo a previously unknown photoredox reaction when irradiated with UVA in the presence of maleimide. Maleimide was found to synergistically act as a radical generating photoxidant and as a radical acceptor, negating the need for an extrinsic photoredox catalyst. Modest to excellent yields of the product chromenopyrroledione, thiochromenopyrroledione and pyrroloquinolinedione derivatives were obtained in thirteen preparative photolyses. In situ NMR spectroscopy was used to study each reaction. Reactant decay and product build‐up were monitored, enabling reaction profiles to be plotted. A plausible mechanism, whereby photo‐excited maleimide acts as an oxidant to generate a radical ion pair, has been postulated and is supported by UV/Vis. spectroscopy and DFT computations. The radical‐cation reactive intermediates were also characterised in solution by EPR spectroscopy.  相似文献   

11.
Stereocontrol in radical reactions of oxime ether anchored to polymer support was studied. Highly diastereoselective solid-phase radical reaction was achieved by using triethylborane and diethylzinc as a radical initiator at low reaction temperature, providing a novel method for the synthesis of the alpha-amino acid derivatives with excellent diastereoselectivities.  相似文献   

12.
Tandem radical addition-cyclization of oxime ethers anchored to polymer support was studied. The reaction of oxime ethers with stannyl radical proceeded effectively by the use of triethylborane as a radical initiator. The alkyl radical addition-cyclization reactions of oxime ether connected with alpha,beta-unsaturated carbonyl group proceeded under iodine atom-transfer reaction conditions to give the functionalized azacycles via two carbon-carbon bonds-forming process.  相似文献   

13.
A novel catalytic method for the radical addition of alkanes and molecular oxygen to electron-deficient alkenes was achieved by the use of N-hydroxyphthalimide (NHPI) combined with a Co species as the catalyst. This reaction is referred to as oxyalkylation of alkenes with alkanes and O(2). For instance, the reaction of 1,3-dimethyladamantane with methyl acrylate under molecular oxygen in the presence of catalytic amounts of NHPI and Co(acac)(3) at 70 degrees C for 16 h gave oxyalkylated products in 91% yield. Other alkenes such as fumarate and acrylonitrile also serve as good acceptors of alkyl radicals and O(2) to afford the corresponding adducts in high yields. The generality of the present reaction was examined between various alkanes and alkenes under dioxygen. The behavior of Co ions during the reaction course was discussed. The present reaction involves (i) an alkyl radical generation via hydrogen abstraction of alkane by phthalimide N-oxyl generated in situ from NHPI and O(2) assisted by Co(II), (ii) the addition of the resulting alkyl radical to an electron-deficient alkene to form an adduct radical, (iii) trapping of the adduct radical by O(2) yielding a hydroperoxide, and (iv) the decomposition of the hydroperoxide by Co ions to form an adduct in which a hydroxy or a carbonyl function is incorporated.  相似文献   

14.
In spite of the large quantity of experimental work that deals with the oxidation of thiols by superoxide, the mechanism of this reaction is still controversial. The ab initio molecular orbital calculations reported here predict that the main reaction pathway includes the formation of a three-electron-bonded adduct followed by the elimination of the hydroxide anion, giving the sulfinyl radical as the reaction product. The alternative reaction pathway consisting of hydrogen atom transfer from the thiol to the protonated superoxide radical involves a reaction energy barrier that is significantly higher. The difference between the two reaction energy barriers is clearly beyond the expected computational uncertainty. The systematic scanning of the potential energy surface reveals no other competitive reaction pathways. The present results provide a useful basis for the interpretation of the complex experimental data related to thiol oxidation by superoxide radical in a biological environment.  相似文献   

15.
Tirapazamine (TPZ) has been tested in clinical trials on radio‐chemotherapy due to its potential highly selective toxicity towards hypoxic tumor cells. It was suggested that either the hydroxyl radical or benzotriazinyl radical may form as bioactive radical after the initial reduction of TPZ in solution. In the present work, we studied low‐energy electron attachment to TPZ in the gas phase and investigated the decomposition of the formed TPZ? anion by mass spectrometry. We observed the formation of the (TPZ–OH)? anion accompanied by the dissociation of the hydroxyl radical as by far the most abundant reaction pathway upon attachment of a low‐energy electron. Quantum chemical calculations suggest that NH2 pyramidalization is the key reaction coordinate for the reaction dynamics upon electron attachment. We propose an OH roaming mechanism for other reaction channels observed, in competition with the OH dissociation.  相似文献   

16.
The Friedel–Crafts acylation reaction, which belongs to the class of electrophilic aromatic substitutions is a highly valuable and versatile reaction in synthesis. Regioselectivity is predictable and determined by electronic as well as steric factors of the (hetero)arene substrate. Herein, a radical approach for the acylation of arenes and heteroarenes is presented. C−H acylation is achieved through mild cooperative photoredox/NHC radical catalysis with the cross-coupling of an arene radical cation with an NHC-bound ketyl radical as a key step. As compared to the classical Friedel–Crafts acylation, a regiodivergent outcome is observed upon switching from the ionic to the radical mode. In these divergent reactions, aroyl fluorides act as the acylation reagents in both the ionic as well as the radical process.  相似文献   

17.
In situ ESR-UV/Vis spectroelectrochemistry is applied to obtain new insights into the intermediates and reaction products of the anodic oxidation of p-toluenediamine in aqueous solution at different pH values. A strong pH dependence of the stability of the cation radical is found. While the absence of a stable radical was proved by ESR spectroscopy at pH 2 and 10, this radical is detected at medium pH values and assigned to the semiquinonediimine structure. The UV/Vis absorption of the radical is observed at these pH values as well. The p-toluenediimine intermediate and the trimeric reaction product were followed during the electrode reaction by UV/Vis spectroscopy at all pH values.  相似文献   

18.
[reaction: see text] Indolones are prepared in excellent yield at 80 degrees C in water by radical reaction (aryl radical formation, hydrogen atom abstraction, cyclization, and rearomatization) mediated by the reagent diethylphosphine oxide (DEPO). The reaction features V-501 as a water-soluble initiator; no other additives are needed. The process proceeds at a much lower temperature than is required for efficient reaction with toxic tributyltin hydride in benzene and permits significantly higher isolated yields than the corresponding reaction mediated by ethylpiperidine hypophosphite (EPHP).  相似文献   

19.
正戊烷与SO2气相光化学反应自由基机理的ESR验证   总被引:1,自引:0,他引:1  
烷烃与SO2的气相光化学作用为自由基反应[1].Penzhorn等[2]对C4以下的气相烷烃与SO2光化学反应产物的复杂性和多样性进行了推测,此后对该光化学反应机理的研究均以反应产物(特别是凝聚态产物)为基础进行的[3].为验证烷烃与SO2光化学反应体系中确实存在自由基,Makarov等[4]向正戊烷与SOz光化学反应体系中引入NO,通过对反应起始阶段的产物的光谱分析和反应动力学研究,论证了该反应的自由基过程.ESR技术是检测自由基的有效方法,Stokes等[5]利用自旋捕集-ESR技术成功地测得了气相羟基自由基的存在.  相似文献   

20.
We have recently proposed that the addition of C2H2 to the cyclopentadienyl radical can lead to the rapid formation of the cycloheptatrienyl radical and, in succession, of the indenyl radical. These reactions represent an interesting and unexplored route for the enlargement of gas-phase cyclic species. In this work we report ab initio calculations we performed with the aim of investigating in detail the gas-phase reactivity of cycloheptatrienyl and indenyl radicals. We found that the reaction of the cycloheptatrienyl radical with atomic hydrogen can lead to its fast conversion into the more stable benzyl radical. This reaction pathway involves the intermediate formation of heptatriene, norcaradiene, and toluene. Successively we investigated whether this reaction mechanism can be extended to polycyclic aromatic hydrocarbons (PAHs). For this purpose we studied the reaction of C2H2 with the indenyl radical, which can be considered as a superior homologue of the cyclopentadienyl radical. This reaction proceeds through a pathway similar to that proposed for C5H5 but with a reaction rate about an order of magnitude smaller. The present calculations extend thus the previously proposed C5-C7-C9 mechanism to bicyclic PAH and suggest a fast route for the conversion of C5 into C6 cyclic radicals, mediated by the formation of C7 cyclic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号