首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谢文杰  唐新峰  张清杰 《中国物理》2007,16(11):3549-3552
TiCoSb-based half-Heusler compounds with the substitution of Zr for Ti have been prepared quickly by combining high-energy ball milling method with spark plasma sintering technique, and their thermal transport properties have been investigated. With the increase of the concentration of Zr, the thermal conductivity of Til-xZrxCoSb compounds decreases significantly. Compared with the thermal conductivity of TiCoSb compound, that of Ti0.5Zr0.5CoSb decreases by 200% at 1000 K.[第一段]  相似文献   

2.
β-eucryptite powders are prepared by the sol-gel method through using tetraethoxysilane lithium nitrate and aluminum isopropoxide as starting materials. β-eucryptite ceramics are prepared by spark plasma sintering. The effects of sintering temperature on the negative thermal expansion properties of the β-eucryptite are investigated by x-ray diffraction(XRD), scanning electron microscopy, and thermal expansion test. The XRD results exhibit no change in the crystal structure of the sample prepared by different sintering processes. The negative thermal expansion properties increase with the increase of the sintering temperature. The coefficient of thermal expansion of β-eucryptite ceramics sintered at 1100℃ is calculated to be -4.93 × 10~(-6)℃~(-1). Crystallization behaviors of the ceramics may play an important role in the increase of negative thermal expansion of β-eucryptite. High sintering temperature could improve the crystallization behaviors of the ceramics and reduce the residue glass phase, which can improve the negative thermal expansion properties of β-eucryptite ceramics.  相似文献   

3.
The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (77K) and room temperature by using the direct current heating method. The result shows that both the electrical and thermal conductivities of the nanofilms reduce greatly compared with their corresponding bulk values. However, the electrical conductivity drop is considerably greater than the thermal conductivity drop, which indicates that the influence of the internal grain boundary on heat transport is different from that of charge transport, hence leading to the violation of the Wiedemann--Franz law. We build an electron relaxation model based on Matthiessen's rule to analyse the thermal conductivity and employ the Mayadas & Shatzkes theory to analyse the electrical conductivity. Moreover, a modified Wiedemann--Franz law is provided in this paper, the obtained results from which are in good agreement with the experimental data.  相似文献   

4.
Osama A Desouky  K E Rady 《中国物理 B》2016,25(6):68402-068402
The effects of TiO_2 on sintering and nonlinear electrical properties of(98.5-x)ZnO–0.5MnO_2–0.5Co_2O_3-0.5Bi_2O_(3–x)TiO_2(x = 0.3,0.5,0.7,0.9 mol%) ceramic varistors prepared by the ceramic technique are investigated in this work.The optimum sintering temperature of the prepared samples is deduced by determining the firing shrinkage and water absorption percentages.The optimum sintering temperature is found to be 1200℃,at which each of the samples shows a maximum firing shrinkage and minimum water absorption.Also minimum water absorption appears in a sample of x = 0.9 mol%.Higher sintering temperature and longer sintering time give rise to a reduction in bulk density due to the increased amount of porosity between the large grains of ZnO resulting from the rapid grain growth induced by the liquid phase sintering.The crystal size of ZnO decreases with increasing TiO_2 doping.The addition of TiO_2 improves the nonlinear coefficient and attains its maximum value at x = 0.7 mol% of TiO_2,further addition negatively affects it.A decrease in capacitance consequently in the dielectric constant is recorded with increasing the frequency in a range of 30 kHz–200 kHz.The temperature and composition dependences of the dielectric constant and AC conductivity are also studied.The increase of temperature raises the dielectric constant because it increases ionic response to the field at any particular frequency.  相似文献   

5.
La1-x SrxCrO3 nanoparticles were prepared by the sol-gel method. The sintering temperature of the samples could be decreased to about 400 K. The crystal structures of La1-x SrxCrO3 at room temperature are all of the othorhombic perovskite GdFeO3-type (x≤0.4). And the electrical conductivity increases with x, but when x>0.3 it decreases. The higher the sintering temperature, the better the electrical conductivity, because the grain size of the examples increases with increasing sintering temperature.  相似文献   

6.
杨宇霖  卢宇 《中国物理 B》2014,(10):409-414
In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal conductivity of the graphene nanoribbons decreases as the defect coverage increases and is saturated in a high defect ratio range. Further analysis reveals a strong mismatch in the phonon spectrum between the unsaturated carbon atoms in 2-fold coordination around the defects and the saturated carbon atoms in 3-fold coordination, which induces high interfacial thermal resistance in defective graphene and suppresses the thermal conductivity. The defects induce a complicated bonding transform from sp2 to hybrid sp–sp2network and trigger vibration mode density redistribution, by which the phonon spectrum conversion and strong phonon scattering at defect sites are explained. These results shed new light on the understanding of the thermal transport behavior of graphene-based nanomaterials with new structural configurations and pave the way for future designs of thermal management phononic devices.  相似文献   

7.
Nb-doped SrTiO_3 thermoelectric ceramics with different niobium concentrations,sintering temperatures and Sr-site vacancies are successfully prepared by high energy ball milling combined with carbon burial sintering.For fully understanding the effect of niobium doping on SrTiO_3,thermoelectric transport properties are systematically investigated in a temperature range from 300 K to 1100 K.The carrier mobility can be significantly enhanced,and the electrical conductivity is quadrupled,when the sintering temperature rises from 1673 K to 1773 K(beyond the eutectic temperature(1713 K) of SrTiO_3–TiO_2).The lattice vibration can be suppressed by the lattice distortion introduced by the doped niobium atoms.However,Sr-site vacancies compensate for the lattice distortion and increase the lattice thermal conductivity more or less.Finally,we achieve a maximum value of figure-of-merit z T of 0.21 at 1100 K for Sr Ti_(0.9)Nb_(0.1)O_3 ceramic sintered at1773 K.  相似文献   

8.
(Sr0.95Gd0.05)Ti O3(SGTO) ceramics are successfully prepared via spark plasma sintering(SPS) respectively at 1548,1648,and 1748 K by using submicron-sized SGTO powders synthesized from a sol–gel method.The densities,microstructures,and thermoelectric properties of the SGTO ceramics are studied.Though the Seebeck coefficient shows no obvious difference in the case that SPS temperatures range from 1548 K to 1648 K,the electrical conductivity and the thermal conductivity increase remarkably due to the increase in grain size and density.The sample has a density higher than 98%theoretical density as the sintering temperature increases up to 1648 K and shows average grain sizes increasing from~ 0.7 μm to 7 μm until 1748 K.As a result,the maximum of the dimensionless figure of merit of ~ 0.24 is achieved at~ 1000 K for the samples sintered at 1648 K and 1748 K,which was ~ 71% larger than that(0.14 at ~ 1000 K) for the sample sintered at 1548 K due to the enhancement of the power factor.  相似文献   

9.
Nanostructured and nanocomposite thermoelec- tric materials have recently attracted a great deal of attention due to the optimization of thermal and electrical transports for high thermoelectric performance The initial ideas for the applica- tions of nano-structures in thermoelectric materials are that the lattice thermal conductivity can be de- pressed by the scattering of nano-particles or nano- boundaries as well as the enhanced electron density of states at the Fermi level. The latter is expected to enhance Seebeck coefficients due to the fact that the low energy carriers can be filtered by nano-sized grain boundaries. Lowered thermal conductivity and enhanced thermoelectric figure of merit have been ob- served in lots of bulk materials with nanostructures or nano-impurities. However, the thermal and electrical transports in these nano-materials are usually mea- sured by normal commercial systems, in which only the statistical values of the transports are obtained. The characterization of local thermoelectric parame- ters still remains a challenging task at the submicro, even nanometer level as a powerful tool for Scanning probe microscopy nanostructure imaging and local properties characterization, has become a promis- ing technique for measuring local thermal and electri- cal properties, like scanning tunneling microscopy, scanning thermal microscopy, and scanning Joule expansion microscopy. Recent work has demon- strated simultaneously determined the thermal con- ductivity and Seebeek coefficient of Bi2Se3 thin film by a microprobe technique.  相似文献   

10.
Superionic conductor RbAg4I5 crystalline grain films were prepared by vacuum thermal evaporation on NaCi crystalling substrates.The surface morphology,microstructure and the electronic energy states of the films were examined by stomic force microscopy,transmission-electron microscopy,x-ray diffraction and x-ray photoelectron spectroscopy.The results show that the obtained RbAg4I5 layer has an epitaxial film of prefect crystalline structure,and the unit cell of crystalline grain RbAg4I5 films belongs to cubic crystal system.The principal x-ray diffraction peaks at d=3.7447 and 1.8773A are related to the structure of ternary compound RbAg4I5 films.  相似文献   

11.
肖星星  谢文杰  唐新峰  张清杰 《中国物理 B》2011,20(8):87201-087201
With good electrical properties and an inherently complex crystal structure, Cu2-xSe is a potential “phonon glass electron crystal” thermoelectric material that has previously not attracted much interest. In this study, Cu2-xSe (0 ≤ x ≤ 0.25) compounds were synthesized by a melting-quenching method, and then sintered by spark plasma sintering to obtain bulk material. The effect of Cu content on the phase transition and thermoelectric properties of Cu2-xSe were investigated in the temperature range of 300 K—750 K. The results of X-ray diffraction at room temperature show that Cu2-xSe compounds possess a cubic structure with a space group of Fm3m (#225) when 0.15 < x le 0.25, whereas they adopt a composite of monoclinic and cubic phases when 0 ≤ x ≤ 0.15. The thermoelectric property measurements show that with increasing Cu content, the electrical conductivity decreases, the Seebeck coefficient increases and the thermal conductivity decreases. Due to the relatively good power factor and low thermal conductivity, the nearly stoichiometric Cu2Se compound achieves the highest ZT of 0.38 at 750 K. It is expected that the thermoelectric performance can be further optimized by doping appropriate elements and/or via a nanostructuring approach.  相似文献   

12.
Polycrystalline rare-earth hexaborides (NdxGdl-x)B6 (x = 0, 0.2, 0.6, 0.8, 1) were prepared by the reactive spark plasma sintering (SPS) method using mixed powder of GdH2, NdH2 and B. The effects of Nd doping on the crystal structure, the grain orientation, the thermionie emission and the magnetic properties of the hexaboride were investigated by X-ray diffraction, electron backscattered diffraction and magnetic measurements. It is found that all the samples sintered by the SPS method exhibit high densities (〉95%) and high values of Vickers hardness (2319 kg/mm2). The values are much higher than those obtained in the traditional method. With the increase of Nd content,the thermionic emission current density increases from 11 to 16.30 A/cm2 and the magnetic phase transition temperature increases from 5.85 to 7.95 K. Thus, the SPS technique is a suitable method to synthesize the dense rare-earth hexaborides with excellent properties.  相似文献   

13.
The tuning of electron and phonon by ion doping is an effective method of improving the performances of thermoelectric materials. A series of lower concentration K-doped Ca_(3-x)K_xCo_4O_9(x = 0, 0.05, 0.10, 0.15) polycrystalline ceramic samples are prepared by combining citrate acid sol-gel method with cold-pressing sintering method. The single-phase compositions and plate-like grain morphologies of all samples are confirmed by x-ray diffraction and field emission scanning electron microscope. The effects of lower concentration K doping on the thermoelectric properties of the material are evaluated systematically at high temperatures(300–1026 K). Low concentration K doping causes electrical conductivity to increase up to 23% with little effect on the Seebeck coefficient. Simultaneously, the thermal conductivity of K-doped sample is lower than that of the undoped sample, and the total thermal conductivity reaches a minimum value of approximately1.30 W·m~(-1)·K~(-1), which may be suppressed mainly by the phonon thermal conduction confinement. The dimensionless figure-of-merit ZT of Ca_(2.95)K_(0.05)Co_4O_9 is close to 0.22 at 1026 K, representing an improvement of about 36% compared with that of Ca_3Co_4O_9, suggesting that lower concentration K-doped Ca_3Co_4O_9 series materials are promising thermoelectric oxides for high-temperature applications.  相似文献   

14.
Mg_3Sb_(1.5)Bi_(0.5)-based alloys have received much attention, and current reports on this system mainly focus on the modulation of doping. However, there lacks the explanation for the choice of Mg_3Sb_(1.5)Bi_(0.5) as matrix. Here in this work,the thermoelectric properties of Mg_3Sb_(2-x)Bi_x(0.4 ≤ x ≤ 0.55) compounds are systematically investigated by using the first principles calculation combined with experiment. The calculated results show that the band gap decreases after Bi has been substituted for Sb site, which makes the thermal activation easier. The maximum figure of merit(ZT) is 0.27 at 773 K,which is attributed to the ultra-low thermal conductivity 0.53 W·m~(-1)·K~(-1) for x = 0.5. The large mass difference between Bi and Sb atoms, the lattice distortion induced by substituting Bi for Sb, and the nanoscale Bi-rich particles distributed on the matrix are responsible for the reduction of thermal conductivity. The introduction of Bi into Mg_3Sb_2-based materials plays a vital role in regulating the transport performance of thermoelectric materials.  相似文献   

15.
In this paper, electronic and thermoelectric properties of Mg_2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters,bulk modulus, band gap and thermoelectric properties(Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg_2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor(PF) increases with temperature. The thermoelectric properties of Mg_2C have been calculated in a temperature range of 100 K–1200 K.  相似文献   

16.
Research on the thermal conduction in a single polymer chain is significant for the improvement of the thermal property of bulk polymer materials. We calculate the thermal conductivity of a single polyethylene (PE) chain by using both the Green-Kubo approach and a nonequilibrium molecular dynamics simulation method. The results suggest that the thermal conductivity of an individual polymer chain is very high although bulk PE is a thermal insulator, even divergent in our case. Moreover, the thermal conductivity of PE chains is observed to increase with the chain length.  相似文献   

17.
We review our main results concerning the transport coefficients of a light meson gas,in particular we focus on the case of a massive pion gas.Leading order results according to the chiral power-counting are presented for the DC electrical conductivity,thermal conductivity,shear viscosity,and bulk viscosity.We also comment on the possible correlation between the bulk viscosity and the trace anomaly in QCD,as well as the relation between unitarity and a minimum of the quotient η/s near the phase transition.  相似文献   

18.
We review our main results concerning the transport coefficients of a light meson gas,in particular we focus on the case of a massive pion gas.Leading order results according to the chiral power-counting are presented for the DC electrical conductivity,thermal conductivity,shear viscosity,and bulk viscosity.We also comment on the possible correlation between the bulk viscosity and the trace anomaly in QCD,as well as the relation between unitarity and a minimum of the quotient η/s near the phase transition.  相似文献   

19.
We study the effect of pressure on electronic and thermoelectric properties of Mg_2Si using the density functional theory and Boltzmann transport equations. The variation of lattice constant, band gap, bulk modulus with pressure is also analyzed. Further, the thermoelectric properties(Seebeck coefficient, electrical conductivity, electronic thermal conductivity) have been studied as a function of temperature and pressure up to 1200 K. The results show that Mg_2Si is an n-type semiconductor with a band gap of 0.21 eV. The negative value of the Seebeck coefficient at all pressures indicates that the conduction is due to electrons. With the increase in pressure, the Seebeck coefficient decreases and electrical conductivity increases. It is also seen that, there is practically no effect of pressure on the electronic contribution of thermal conductivity.The paper describes the calculation of the lattice thermal conductivity and figure of merit of Mg_2Si at zero pressure. The maximum value of figure of merit is attained 1.83 × 10~(-3) at 1000 K. The obtained results are in good agreement with the available experimental and theoretical results.  相似文献   

20.
The non-equilibrium molecular dynamics method is adapted to calculate the phonon thermal conductivity of alphazirconium. By exchanging velocities of atoms in different regions, the stable heat flux and the temperature gradient are established to calculate the thermal conductivity. The phonon thermal conductivities under different conditions, such as different heat exchange frequencies, different temperatures, different crystallographic orientations, and crossing grain boundary (GB), are studied in detail with considering the finite size effect. It turns out that the phonon thermal conductivity decreases with the increase of temperature, and displays anisotropies along different crystallographic orientations. The phonon thermal conductivity in [0001] direction (close-packed plane) is largest, while the values in other two directions of [2īī0] and [01ī0] are relatively close. In the region near GB, there is a sharp temperature drop, and the phonon thermal conductivity is about one-tenth of that of the single crystal at 550 K, suggesting that the GB may act as a thermal barrier in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号