首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for imaging of chemical shift or magnetic field distributions   总被引:1,自引:0,他引:1  
A phase encoding method for imaging of chemical shift or magnetic field distributions is described. The method utilizes the spin-echo principle and the time period between signal collection and excitation is constant but the time period between excitation and the 180 degrees pulse is varied by constant steps. The method is relatively easy to apply with the Fourier or projection reconstruction methods.  相似文献   

2.
Three-dimensional chemical shift imaging (3D CSI) with appropriate data postprocessing can be used as a tool to improve spectral resolution in samples where large susceptibility differences and limited shim capabilities prevent good sample shimming. Data postprocessing is reduced to the realignment of individual 3D voxel spectra. As a result, the line broadening due to the field inhomogeneity over the sample's volume is reduced to the broadening by inhomogeneity within individual voxels. We compared this method with the resolution enhancement by window multiplication. We demonstrated, theoretically and experimentally, that in the presence of large, lower-order gradients, 3D CSI achieves better resolution enhancement with smaller sensitivity losses. An application of the method to a simple biological system is presented as well.  相似文献   

3.
Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates.  相似文献   

4.
The purpose of this study was to investigate the effect of parameter changes that can potentially lead to unreliable measurements in fat quantification. Chemical shift imaging was performed using spoiled gradient echo sequences with systematic variations in the following: two-dimensional/three-dimensional sequence, number of echoes, delta echo time, fractional echo factor, slice thickness, repetition time, flip angle, bandwidth, matrix size, flow compensation and field strength. Results indicated no significant (or significant but small) changes in fat fraction with parameter. The significant changes can be attributed to the known effects of T1 bias and two forms of noise bias.  相似文献   

5.
One major effect caused by the different chemical shift frequencies of water and fat is the misregistration between the two components in MR images. Methods to correct misregistration are required in clinical MRI for accurate localization and artifact reduction. One of the methods uses the images scanned at opposite readout gradients to separate water and fat signal in the k-space. Its signal-to-noise ratio (SNR) achieves maximum when misregistration is around 0.9 pixels and deteriorates rapidly as the misregistration gets larger. In this work, we proposed a method to correct the chemical shift misregistration by using two data sets acquired at two different bandwidths. It is more generalized and flexible than the former method of opposite readout gradients and covers the former one as a special case. In both simulation and experiment, the new method is proved to be capable of correcting large chemical shift misregistration and maintain a good SNR.  相似文献   

6.
Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled 15N solid-state NMR spectroscopy. For 13C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the 15N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the 15N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that 15NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of 15NH4Cl chemical shift is reported.  相似文献   

7.
Static and 29Si CP MAS spectra (spinning rates of 2000 and 500 Hz) of six silyl silicate cages are analyzed by deconvolution and simulation. The principal values of the various 29Si chemical shift tensors provide information about the point symmetry of the Si sites. The intensities of the signals correspond sufficiently well with the stoichiometries.  相似文献   

8.
Chemical shift imaging (CSI) relies on a strong and homogeneous main field. Field homogeneity ensures adequate coherence between the precessions of individual spins within each voxel. Variation of field strength between different voxels causes geometric distortion and intensity variation in chemical shift images, resulting in errors when analyzing the spatial distribution of specific chemical compounds. A post-processing method, based on detection of the spectral peak of water and baseline subtraction with Lorentzian functions, was developed in this study to automatically correct spectra offsets caused by field inhomogeneity, thus enhancing the contrast of the chemical shift images. Because this method does not require prior field plot information, it offers advantages over existing correction methods. Furthermore, the method significantly reduces geometric distortion and enhances signals of chemical compounds even when the water suppression protocol was applied during the CSI data acquisition. The experimental results of the water and glucose phantoms showed a considerable reduction of artifacts in the spectroscopic images when this post-processing method was employed. The significance of this method was also demonstrated by an analysis of the spatial distributions of sugar and water contents in ripe and unripe bananas.  相似文献   

9.
We present a new NMR technique for determining the alignment tensor of a weakly aligned protein using only alignment-induced 15N transverse relaxation optimized spectroscopy (TROSY) chemical shift changes. Alignment-induced TROSY chemical shift changes reflect the combined contributions from two different anisotropic spin interactions including the residual dipolar couplings (RDCs) and the residual chemical shift anisotropy effects (RCSAs). We show here that these two residual anisotropic spin interactions’ values, encoded in the TROSY chemical shift changes, can be used to determine a weakly aligned protein’s alignment tensor. To prove the significance of this method, we show that our TROSY-based analysis gives the consistent alignment angles with those determined using RDCs for 15N-labeled ubiquitin (8.6 kDa) in an aligned medium, within an uncertainty range estimated by considering experimental and structural noises, being 5° at most. Because our approach requires a pre-determined 15N CSA tensor value, we also estimated the uncertainties associated with the resultant alignment tensor values caused by variation in 15N CSA tensors. In spite of the significant variations in literature-reported 15N CSA tensors, they gave consistent orientation angles within an uncertainty range. These results ensure that our TROSY-based approach is a useful alternative to the RDC-based method to determine the alignment angles especially for large proteins in a weakly aligned state.  相似文献   

10.
An experiment is presented that enables the measurement of small chemical shift anisotropy tensors under fast magic-angle spinning (MAS). The two-dimensional spectra obtained give a fast MAS sideband pattern in the directly observed dimension with the spinning sideband intensities equivalent to the chemical shift anisotropy scaled by a factor of N, or equivalently the sample spinning frequency scaled by 1/N, in the indirectly observed dimension. The scaling factor may be arbitrarily varied by changing the number and timings of the rotor synchronized pi-pulses used. Desirable features of the experiment include a fixed length pulse sequence and efficient sampling of the indirectly observed dimension. In addition, neither quadrature detection in the indirect dimension nor storage periods are required, consequently no signal intensity is discarded by the pulse sequence. The experiment is demonstrated using (31)P NMR of sodium phosphate and (13)C NMR of fumaric acid monoethyl ester for which a scaling factor of N=10.2 was employed.  相似文献   

11.
Chemical shift referencing in MAS solid state NMR   总被引:7,自引:0,他引:7  
Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.  相似文献   

12.
93Nb solid-state NMR spectra of a series of inorganic niobates with Nb in different oxygen coordination environments were measured. For all studied compounds the chemical shielding and quadrupole tensor parameters were determined using conventional and ultrahigh field NMR facilities, ultrahigh speed MAS, DQ STMAS, solid-echo and computer modeling. It has been demonstrated that the 93Nb isotropic chemical shift is sensitive to the coordination number of Nb sites. For the first time the 93Nb NMR chemical shift scale for NbOx polyhedra in solid materials has been proposed: for four-coordinated Nb sites, the isotropic shifts occur from −650 to −950 ppm; five-coordinated Nb sites have the isotropic shifts in the range of –900 to –980 ppm; for six-coordinated Nb sites the isotropic shifts vary from −900 to −1360 ppm; the shifts from −1200 to −1600 ppm are typical for seven-coordinated Nb sites; for eight-coordinated Nb sites the shifts are higher than −1400 ppm. The possible correlation between the value of the isotropic chemical shift and the ionic character of the NbOx–MOy polyhedra association has been suggested. The magnitude of the 93Nb quadrupole coupling constant depends on the local symmetry of Nb sites and may vary from hundreds of kHz to hundreds of MHz.  相似文献   

13.
A comparative analysis of nuclear chemical shift predictions of proteins in the solid state by rapid algorithms trained on and verified with solution-state NMR assignments is presented. The precision of predictions by four dedicated computer programs (SHIFTS, PROSHIFTS, SHIFTX and SPARTA) was found to be close to values obtained for proteins in solution. Correlation coefficients depend on the NMR nucleus (N, C′, Cα and Cβ) and on secondary structure (β-strand, random coil and α-helix), but also on the molecular environment (membrane-integral or not). The findings establish a quantitative basis for using chemical shift prediction programs for solid-state NMR applications. On the other hand, prediction inaccuracies identified for certain resonance kind, residue type, and molecular environment point to possible areas of methodological improvement.  相似文献   

14.
A method of determination of chemical shift anisotropy (CSA) tensor principal components under MAS condition is presented. It is a simple, one-dimensional, and robust alternative to the commonly exploited, but more complicated 2D-PASS. The required CSA components are delivered by simultaneous numerical analysis of a few regular MAS spectra acquired under different spinning rates.  相似文献   

15.
Static 1H NMR spectra of hydrous NaAlSi3O8 glasses have been acquired at low temperature (140 K) in order to quantitatively determine OH and H2O concentrations. Since both components overlap in the spectra, an unambiguous determination of the line shapes is required. The structurally bonded hydroxyl groups are well described by a Gaussian line and the water molecules exhibit a Pake doublet-like line shape due to the strong proton–proton dipolar interaction. However, at proton resonance frequencies used in this study (360 MHz), the Pake doublet has an asymmetric line shape due to chemical shift anisotropy (CSA), which is significant and must be included in any simulation in order to reproduce the experimental line shape successfully. The simulations for rigid water molecules dissolved in our hydrous aluminosilicate glasses result in a CSA of 30±5 ppm and a dipolar interaction constant of 63.8±2.5 kHz (i.e., dipolar coupling constant (DCC) of 42.6±1.7 kHz), corresponding to a proton–proton distance of rij=154±2 pm. In contrast to earlier work, water speciation obtained from the simulations of our 1H NMR spectra are in excellent agreement with those obtained from infrared (IR) spectroscopy.  相似文献   

16.
The study of focal pathology by single-voxel magnetic resonance spectroscopy (MRS) is hampered by the impossibility to study tissue heterogeneity or compare the metabolite signals in breast lesion directly to those in unaffected tissue. Multivoxel MRS studies, while potentially allowing for truly quantitative tissue characterization, have up to now also been far from quantitative with, for example, the signal-to-noise ratio of the choline (Cho) signal serving as measure of tumor activity. Shown in this study is that in a standard clinical setting with a regular 1.5-T magnetic resonance scanner, it is possible to perform quantitative multivoxel MRS. With the use of literature values for the T1 and T2 relaxation times of Cho and water in fibroglandular breast tissue and tumors, one can determine the concentrations of Cho in different tumor compartments and surrounding tissues in two brief multivoxel MRS measurements. This opens excellent perspectives to quantitative diagnostic and follow-up studies of focal pathology such as lesions suspected of breast cancer.  相似文献   

17.
We present a modulated gradient spin-echo method, which uses a train of sinusoidally shaped gradient pulses separated by 180° radio-frequency (RF) pulses. The RF pulses efficiently refocus chemical shifts and de-phasing due to susceptibility differences, resulting in undistorted, high-resolution diffusion weighted spectra. This allows for the simultaneous spectral characterization of the diffusion of several molecular species with different chemical shifts. The technique is robust against susceptibility artifacts, field inhomogeneity and imperfections in the gradient generating equipment. The feasibility of the technique is demonstrated by measuring the diffusion of water, oil, and water-soluble salt in a highly concentrated water-in-oil emulsion. The diffusion of water and salt reveal precise information about the droplet size distribution below the μm-range. Common droplet size distribution explains both the data for water with finite long-range diffusion and the data for salt with negligible long-range diffusion. The results of water diffusion show that the technique is efficient in deconvolving the effects of molecular exchange between droplets and restricted diffusion within droplets. The effects of water exchange suggest that droplets of different sizes are uniformly distributed within the sample.  相似文献   

18.
The statistical model for describing network-forming systems, developed in our previous works, is applied to study of metallic alloys with chemical bonding. The model is based on the representation of the sum of statistical weights over all possible configurations for a thermoreversible network in the form of a functional integral over a scalar field. The mean-field solution of the model is derived, and for particular case of a binary alloy having single element of chemical short-range order A2B-type, thermodynamic and structural properties have been analyzed. This analysis allows to plot the temperature-concentration phase diagram of the model representing two immiscibility gap meeting in the distectic point. It is shown that at some temperatures and concentrations, geometry percolation of the network of chemical bonds and thus a sol-gel transition may take place. The critical percolation line was plotted in common with phase diagram. Then, the structural transitions, glass-forming ability and magnetic properties of Al-R alloys are discussed in the frames of this conception. It is proposed that the range of easy glass formation is confined on the left by the minimal concentration for the sol-gel transition and on the right by the concentration corresponding to the fractal-to-Euclidian crossover in the structure of percolation cluster. Finally, the abnormal growth of Al-REM magnetic susceptibility occurring above melting point of Al2R compound is also explained.  相似文献   

19.
Random coil phosphorus chemical shift of deoxyribonucleic acids   总被引:1,自引:0,他引:1  
Random coil phosphorus chemical shift has been studied using 16 17-nucleotide DNA sequences. Due to the presence of residual base stacking in these sequences, the temperature and sequence effects were investigated at 50 and 55 degrees C. The phosphorus chemical shifts of random coil DNA sequences have been found to be independent of temperature. Sequence effect analysis shows that the phosphorus chemical shift of a nucleotide in a random coil DNA sequence depends on both its 5'- and 3'-nearest neighbors. A trimer model has been used to establish the random coil 31P chemical shift prediction protocol which shows an accuracy of 0.02 ppm.  相似文献   

20.
This paper presents results from applying different point charge models to take into account intermolecular interactions to model the solid state effects on the 15N NMR chemical shifts tensors. The DFT approach with the BLYP gradient corrected exchange correlation functional has been used because it can include electron correlation effects at a reasonable cost and is able to reproduce 15N NMR chemical shifts with reasonable accuracy. The results obtained with the point charge models are compared with the experimental data and with results obtained using the cluster model, which includes explicitly neighboring molecular fragments. The results show that the point charge models can take into account solid state effects at a cost much lower than the cluster methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号