首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
船体角形变是传递对准中的主要误差源,需要依靠测量仪器精确标定。根据姿态匹配方法使用两套激光陀螺组合体可以计算角形变。但是动态形变和船体运动角速度的交叉相关的观测耦合效应导致角形变的最优估计结果不准确,并且通过姿态匹配方法这种观测耦合效应是不能被准确测量的,需要结合其它角形变的测量信息进行计算。基于角速度匹配方法,研究了观测耦合效应,并得出其导致角形变估计的偏置误差,且受船体运动角速度调制的结论。通过补偿激光陀螺组合体测量的角速度,降低了观测耦合效应,得到了高精度的对准结果。仿真结果表明观测耦合效应主要导致了静态形变估计精度的不准确。  相似文献   

2.
针对激光陀螺测量误差对船体自主变形测量精度的影响问题,在角速度匹配方程基础上提出了一种信号同步积分求解变形角的方法。根据船体角运动的周期特性,利用实测船体运动角速度信号产生时序同步信号,并与角速度匹配方程相乘得到新的测量方程,使得包含变形角信息的有用信号通过积分得到增强,而陀螺误差则被调制为随机信号,积分后被抑制,从而提高了测量方程的信噪比。仿真结果表明:当积分时间大于5 min时,变形角测量误差的均方根值(RMS)小于10",且随着积分时间的增加,测量精度将会提高。这种同步积分方法不需要对陀螺误差建模即可实现对船体变形的高精度测量,而且直观地解释了在激光陀螺误差存在条件下自主变形测量误差不随时间发散的原因。  相似文献   

3.
针对激光陀螺船体角形变测量,分析评估了两组激光陀螺组合体时间同步误差的影响,并提出了一种时间同步误差的在线估计算法。严格推导了考虑了时间同步误差的惯性姿态匹配方程,从方程可见,船体在波浪摇摆条件下时间同步误差将导致额外的Kalman滤波观测量波动误差,直接影响船体角形变测量精度。另一方面,基于新推导的惯性姿态匹配方程,在滤波状态中增加时间延迟变量,通过Kalman滤波能够在线估计时间延迟大小。基于实测远望船体姿态和角变形数据进行了仿真,仿真测试表明大的时间延迟将导致大的船体角形变测量误差,同时验证了时间延迟在线估计方法的有效性。  相似文献   

4.
针对激光陀螺船体角形变测量,分析评估了两组激光陀螺组合体时间同步误差的影响,并提出了一种时间同步误差的在线估计算法.严格推导了考虑了时间同步误差的惯性姿态匹配方程,从方程可见,船体在波浪摇摆条件下时间同步误差将导致额外的Kalman滤波观测量波动误差,直接影响船体角形变测量精度.另一方面,基于新推导的惯性姿态匹配方程,在滤波状态中增加时间延迟变量,通过Kalman滤波能够在线估计时间延迟大小.基于实测远望船体姿态和角变形数据进行了仿真,仿真测试表明大的时间延迟将导致大的船体角形变测量误差,同时验证了时间延迟在线估计方法的有效性.  相似文献   

5.
根据激光陀螺组合体测量的角增量计算得到的惯性姿态匹配测量方程,结合动态变形模型和静态变形模型,构建了船体角变形测量的最优滤波器,实现了角变形的最优估计。该方法将角变形和激光陀螺的随机漂移误差近似为平稳随机过程并分别构建滤波器,静态变形建模为白噪声驱动的一阶随机游走过程,动态变形建模为二阶马尔可夫平稳随机过程。通过角速度匹配测量方程进行了角变形的观测性分析得知:动态变形的估计精度与激光陀螺的测量精度相当,静态变形的估计精度依赖于船体摇摆频率和幅度,因此最优估计法的误差主要为静态角变形模型的估计误差。仿真结果表明,通过设置合适的静态角变形模型参数,该最优估计法测量角变形的误差小于10"。  相似文献   

6.
针对船体静态角形变缓慢变化的特征,在Mochalov船体角形变理论和姿态匹配算法的基础上,提出了一种用角速度的一阶Markov过程来描述静态角形变缓慢变化行为的方法。考虑到静态形变角速度变化较慢、相关时间较长的实际情况,一阶Markov过程可进一步简化为随机游走过程。仿真结果表明,视准静态角形变为常量的Mochalov角形变模型无法跟踪准静态角形变的缓慢变化,精度较差;而新的形变模型不仅能够跟踪缓慢变化的准静态角形变,对于转舵等因素引起的短时大幅角形变也同样有效,总形变测量精度优于30″(RMS),这为激光陀螺船体形变测量技术进入工程应用打下了基础。  相似文献   

7.
基于长期变形、动态挠曲变形以及陀螺随机零偏的状态方程,构建了激光陀螺测量的惯性姿态匹配最优滤波器,可以实时地估计出船体变形角。针对实时估计的长期变形角具有偏置误差的问题,推导了惯性姿态匹配的误差方程,指出动态挠曲变形角与船体惯性姿态角之间具有长时间的交叉相关耦合作用导致了长期变形角估计具有偏置误差,并提出了对输入到最优滤波器的激光陀螺角增量进行自适应补偿的方法来抑制偏置误差。实验结果表明,补偿后俯仰角、横滚角和艏挠角的偏置误差均方根均小于5″,较补偿前降低均方根误差约为5″,该自适应补偿方法可有效地抑制偏置误差,提高惯性姿态匹配方法在船体变形测量应用中的有效性。  相似文献   

8.
基于姿态匹配的船体形变测量方法   总被引:2,自引:0,他引:2  
针对激光陀螺船体形变测量系统,提出了一种新的基于姿态匹配的形变测量解算方法。该方法不同于以角速度差作为观测量的惯性测量匹配法,而是基于两套激光陀螺系统的姿态信息。确立了新的形变测量滤波观测量,并建立线性量测方程。两套激光陀螺系统直接利用激光陀螺输出的角增量数据相对于惯性空间进行姿态更新,惯性坐标系取为各自初始时刻的载体坐标系,完全回避了系统初始对准问题,且充分利用了激光陀螺角度测量精度高的特点。仿真结果表明,该方法能够有效实现船体形变的高频精确测量,仿真测量精度优于15″,为激光陀螺船体形变测量技术进入工程应用打下了基础。  相似文献   

9.
基于惯性测量单元的匹配滤波算法是测量船体变形的发展趋势,然而在实际航行中,船体变形模型参数是未知或存在不确定性,模型参数的这一特性对滤波估计结果影响较大。针对此问题,利用"速度+角速度"匹配算法分析了模型参数未知对滤波估计效果的影响,引入交互式多模型卡尔曼滤波方法,利用不同模型参数的似然函数进行概率分配。最后通过仿真对提出的方法进行了验证,结果表明,与传统卡尔曼滤波相比,估计精度提高了5%~10%,收敛时间提高了1倍,动态变形角的收敛时间在10 s以内,静态变形角的收敛时间在5s以内,提高了系统的环境适应性。  相似文献   

10.
为了提高机载分布式POS中子POS的测量精度,补偿机翼的挠曲变形,提出了一种机载环境下传递对准方法。为验证该方法的有效性,搭建了机载分布式POS地面演示系统。针对该地面演示系统,提出了运用ANSYS辅助力学建模的方法建立了模拟机翼杆挠曲运动模型,并将由机翼挠曲运动产生的挠曲变形角和挠曲变形角速度增广为卡尔曼滤波的状态变量。在此基础上,详细推导了考虑挠曲变形时姿态误差量测方程,设计了基于"速度+姿态"匹配方式的卡尔曼滤波器。仿真结果表明,采用该挠曲变形补偿方法进行传递对准,水平失准角精度优于3?,方位失准角精度优于5?。仿真结果验证了该方案的可行性,为机载分布式POS提供了工程应用参考。  相似文献   

11.
为提高舰载机的快速反应能力,设计了一种测量参数组合匹配传递对准新方法。以舰载机惯导的姿态四元数和移动基准惯导的姿态四元数为切入点,通过四元数乘法构建量测量,并与角速度匹配组合构成量测方程,可有效克服传统姿态角匹配计算量大的不足,并获得较好的快速性和滤波精度。给出了数学模型,阐述了工作思路,推导了量测方程,并在舰载条件下进行了分析比较和仿真验证。仿真结果表明,采用本文提出的方法可获得良好的稳健性、快速性和准确性,估计精度与角速度加姿态角匹配方案的精度相当,计算量也明显减小。舰载机惯导系统不但在不到10 s的时间里就完成了对失准角和安装误差角的估计,估计精度均在0.5'以内,还能在不到100 s的时间里完成对陀螺漂移的估计,实现对陀螺器件的标定。  相似文献   

12.
单基线GPS动态航向测量与误差分析   总被引:1,自引:0,他引:1  
针对GPS天线安装偏差在动态、实时情况下导致测量设备空间参考基准不一致,进而产生GPS航向测量误差的问题,采用空间投影的方法,分析了船体纵横摇、GPS天线高程差、方位偏差、GPS测量基线长和基座高程差等因素对GPS航向的影响,推导了GPS动态航向测量模型的误差补偿方程。仿真结果表明,方位偏差和船体横摇角分别是舰船静态和动态情况下GPS航向测量误差的主要影响因素。以某型高精度INS导航参数为基准,对GPS实测数据进行评估,试验结果表明,误差补偿后的GPS航向与INS航向的差值在均值统计上相差0.001°,证实了补偿模型提高GPS航向测量精度的有效性。  相似文献   

13.
利用磁场传感器可辅助载体进行角速度测量.在用于飞行载体时,由于载体通常伴随有圆锥运动,并且载体自身会对内部磁场产生干扰,使磁场传感器输出产生畸变,从而导致利用磁场辅助测量的载体角速度的误差较大.针对这个问题,提出了一种基于实时误差补偿的在圆锥运动及磁场干扰影响条件下利用磁场辅助进行角速度测量的方法.该方法利用载体过去1周旋转的数据,实时对圆锥运动与磁场干扰进行补偿,然后根据补偿结果计算当前载体的角速度.当载体角速度越大时,精度越高.通过飞行实验对该方法进行了验证,实验结果表明,在角速度大于300 (°)/s时,角速度误差小于1(°)/s.  相似文献   

14.
为提高捷联惯导在高动态条件下的姿态解算精度,基于等效旋转矢量泰勒级数展开法,提出一种基于正弦函数拟合的高动态捷联惯导姿态更新算法。以正弦函数拟合载体运动角速度,考虑Bortz方程高阶项的影响,对陀螺角增量表示的旋转矢量进行泰勒六阶展开,对比旋转矢量不同形式表达式求得误差补偿系数。在MATLAB平台上,以圆锥运动与大角速率转动并存环境作为仿真条件,对所提算法与传统算法进行对比仿真分析。仿真结果表明,在小半锥角低频圆锥运动伴随高速角速率转动情况下,所提算法性能较好,当半锥角为0.5°、角频率为2.26πrad/s、常值角速率为5.30 rad/s、姿态解算周期为0.02 s时,所提正弦函数拟合三子样旋转矢量算法与传统扩展形式频率级数/显示频率三子样圆锥算法相比误差降低了2个数量级。  相似文献   

15.
针对空间非合作目标近程交会自主无源仅测角相对导航系统状态不可观测的问题,提出基于相机偏心安装"杆臂效应"提供状态可观测性的仅测角相对导航算法。首先建立了相机偏置情况下的视线测量模型,然后提出了一种"类线性"变换的方法对系统进行可观测性分析,获得了使状态可观测的相机偏置条件,最后以建立的基于无迹卡尔曼滤波的仅测角相对导航算法和典型的交会轨迹进行理论结果的非线性Monte Carlo打靶数值仿真验证。仿真结果表明了理论分析结果的正确性,采用Clohessy-Wiltshire(CW)方程5 m偏置时,相对距离估计误差约2.5%,10 m偏置时约1.5%,采用Tschauner-Hempel(TH)方程时则分别为1.5%和1.1%。  相似文献   

16.
旋转调制光纤陀螺航海惯导系统中,光纤陀螺标度因数误差会与地球自转角速度耦合产生等效的天向和北向陀螺漂移误差,也会与船体摇摆角速度以及惯性测量单元旋转调制角速度耦合产生短时动态误差,限制了长航时航海惯性导航精度。通过使用两套三轴旋转调制光纤陀螺航海惯导系统进行联合旋转调制,提出一种光纤陀螺标度因数误差在线估计与自校正方法。根据两套三轴旋转调制光纤陀螺航海惯导系统的水平旋转轴空间夹角关系建立观测方程,实现在线估计滤波。半实物仿真结果表明,自主导航过程中光纤陀螺标度因数误差在线估计精度优于1 ppm,利用输出校正方式在线补偿光纤陀螺标度因数误差导致的惯导定位误差,有效抑制了两套三轴旋转调制光纤陀螺航海惯导系统定位误差的增长。实际转台模拟实验中,两套三轴旋转调制光纤陀螺惯导系统300 h纯惯性导航整体定位最大误差分别减小25%和40%。算法采用地心地固坐标系,因此也适用于极区导航情况。  相似文献   

17.
针对船体变形测量系统中模型不确定以及未知噪声影响导致的误差问题,分析并推导了模型偏差对滤波估计的影响,提出一种基于姿态匹配的强跟踪最大互相关熵卡尔曼滤波(STMCKF)算法,用于船体变形估计。该算法采用姿态匹配,基于两套惯性系统的姿态信息确立滤波观测量并建立线性量测方程,通过自适应在线调整多个渐消因子对多个数据通道进行渐消,减小模型失配导致的误差,并设计基于最大互相关熵准则为最优准则的滤波算法,减小量测过程中受到的非高斯噪声产生的误差。最后,在模型不匹配及噪声不确定的条件下进行了仿真验证。仿真结果表明,与传统卡尔曼滤波相比,变形估计精度提高10%~30%,提高了系统鲁棒性和环境适应性。  相似文献   

18.
旋转调制式惯导已成为舰船主惯导,在采用旋转调制式惯导进行船体变形角测量时,由于旋转轴与惯性测量组件的坐标系不完全重合,导致船体变形角中被引入与旋转相关的波动误差。针对这一问题,提出了考虑旋转调制惯导转轴倾角误差的船体变形测量方法。推导了单轴旋转系统转轴倾角误差与船体变形测量之间的数学关系,构建了含有轴角误差的状态观测数学模型,利用卡尔曼滤波器实现了船体变形测量的同时对转轴倾角进行估计。实验结果表明,所提方法可以估计出旋转调制惯导中存在的转轴倾角大小,有效提高测得船体变形角精度,其中水平方向提升到6″,纵向方向提升到6″,为利用旋转调制式惯导进行船体变形测量提供参考。  相似文献   

19.
为实现舰载机大方位失准角条件下的快速传递对准,提出采用旋转矢量误差模型。分别推导了速度匹配和速度加角速度匹配的量测模型。为解决非线性滤波器的稳定性和快速性,提出采用平方根无迹卡尔曼滤波SRUKF来估计失准角。仿真结果表明,旋转矢量误差模型相对于非线性的欧拉角误差模型有更高的估计精度。在海况引起的摇摆运动下,运用速度加角速度匹配方法可以在50 s内完成对准,此时水平精度达到20?以内,航向精度达到1?以内。由此表明所提出的算法可以满足舰载机传递对准快速性和精确性的要求。  相似文献   

20.
火箭弹大动态单轴平台惯导系统姿态算法   总被引:1,自引:0,他引:1  
火箭弹在飞行中常采用滚转稳定的控制方式,其滚转角速度的动态范围很大,因此实时、准确地测量滚转角速度和滚转姿态角成为制导火箭弹控制的关键问题。大动态单轴平台惯导系统将IMU安装在沿滚转方向的稳定平台上,通过伺服电机驱动单轴平台相对于弹体反旋,隔离滚转方向的大动态角速度,为IMU提供平稳的测试环境。介绍了大动态单轴平台惯导系统的组成和功能,搭建了样机,推导了惯导姿态解算的数学模型。经过120 s半实物仿真试验,系统俯仰姿态角误差<4°,偏航姿态角误差<3°,滚转姿态角误差<25°,结果验证了整体方案的可行性和姿态解算模型的正确性。为进一步提高姿态解算精度,搭建单轴平台组合导航系统,实现全部导航信息的高精度测量打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号