首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using approximate symmetry methods for differential equations we have investigated the exact and approximate symmetries of a Lagrangian for the geodesic equations in the Kerr spacetime. Taking Minkowski spacetime as the exact case, it is shown that the symmetry algebra of the Lagrangian is 17 dimensional. This algebra is related to the 15 dimensional Lie algebra of conformal isometries of Minkowski spacetime. First introducing spin angular momentum per unit mass as a small parameter we consider first-order approximate symmetries of the Kerr metric as a first perturbation of the Schwarzschild metric. We then consider the second-order approximate symmetries of the Kerr metric as a second perturbation of the Minkowski metric. The approximate symmetries are recovered for these spacetimes and there are no non- trivial approximate symmetries. A rescaling of the arc length parameter for consistency of the trivial second-order approximate symmetries of the geodesic equations indicates that the energy in the charged-Kerr metric has to be rescaled and the rescaling factor is r-dependent. This re-scaling factor is compared with that for the Reissner–Nordström metric.  相似文献   

2.
We give necessary and sufficient conditions for a nonautonomous second-order differential equation to be submersive. An application to nonautonomous Lagrangian systems is given: the existence of symmetries of the Lagrangian permits us to prove that the Euler-Lagrange vector field is submersive and hence that the motion equations may be simplified. Our results extend to the nonautonomous case the previous ones obtained by Kossowski and Thompson.  相似文献   

3.
We discuss the two-dimensional isotropic antiferromagnet in the framework of gauge invariance. Gauge invariance is one of the most subtle useful concepts in theoretical physics, since it allows one to describe the time evolution of complex physical system in arbitrary sequences of reference frames. All theories of the fundamental interactions rely on gauge invariance. In Dirac’s approach, the two-dimensional isotropic antiferromagnet is subject to second-class constraints, which are independent of the Hamiltonian symmetries and can be used to eliminate certain canonical variables from the theory. We have used the symplectic embedding formalism developed by a few of us to make the system under study gauge invariant. After carrying out the embedding and Dirac analysis, we systematically show how second-class constraints can generate hidden symmetries. We obtain the invariant second-order Lagrangian and the gauge-invariant model Hamiltonian. Finally, for a particular choice of factor ordering, we derive the functional Schröodinger equations for the original Hamiltonian and for the first-class Hamiltonian and show them to be identical, which justifies our choice of factor ordering.  相似文献   

4.
We show that the cotangent bundle T*T of the tangent bundle of any differentiable manifold carries an integrable almost tangent structure which is generated by a natural lifting procedure from the canonical almost tangent structure (vertical endomorphism) of T . Using this almost tangent structure we show that T*T is diffeomorphic to a tangent bundle, namely TT* . This provides a new and geometrically instructive proof of a result of Tulczyjew, which has applications in Lagrangian and Hamiltonian dynamics and in field theory The requisite general definitions and results concerning liftings of geometric objects from a manifold to its cotangent bundle are given. As an application, we shed new light on the meaning of so-called adjoint symmetries of second-order differential equations.  相似文献   

5.
We explore the conditions for the existence of Noether symmetries in the dynamics of FRW metric, non minimally coupled with a scalar field, in the most general situation, and with nonzero spatial curvature. When such symmetries are present we find a general exact solution for the Einstein equations. We also show that non Noether symmetries can be found. Finally, we present an extension of the procedure to the Kantowski-Sachs metric which is particularly interesting in the case of degenerate Lagrangian.  相似文献   

6.
7.
Using Poincaré parametrization of AdS space, we study totally symmetric arbitrary spin massless fields in AdS space of dimension greater than or equal to four. CFT adapted gauge invariant formulation for such fields is developed. Gauge symmetries are realized similarly to the ones of Stueckelberg formulation of massive fields. We demonstrate that the curvature and radial coordinate contributions to the gauge transformation and Lagrangian of the AdS fields can be expressed in terms of ladder operators. Realization of the global AdS symmetries in the conformal algebra basis is obtained. Modified de Donder gauge leading to simple gauge fixed Lagrangian is found. The modified de Donder gauge leads to decoupled equations of motion which can easily be solved in terms of the Bessel function. Interrelations between our approach to the massless AdS fields and the Stueckelberg approach to massive fields in flat space are discussed.  相似文献   

8.
In this Letter a first-order Lagrangian for the Schrödinger–Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D 56(8) (1997) 4844–4877]. Then Noether's theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schrödinger–Newton equations, Nonlinearity 19(7) (2006) 1507–1514] in order to find conservation laws of the Schrödinger–Newton equations.  相似文献   

9.
In the recent paper by one of the authors (MBS) and A. A. Malykh on the classification of second-order PDEs with four independent variables that possess partner symmetries [1], mixed heavenly equation and Husain equation appear as closely related canonical equations admitting partner symmetries. Here for the mixed heavenly equation and Husain equation, formulated in a two-component form, we present recursion operators, Lax pairs of Olver–Ibragimov–Shabat type and discover their Lagrangians, symplectic and bi-Hamiltonian structure. We obtain all point and second-order symmetries, integrals and bi-Hamiltonian representations of these systems and their symmetry flows together with infinite hierarchies of nonlocal higher symmetries.  相似文献   

10.
The fundamental relation between Lie-Bäcklund symmetry generators andconservation laws of an arbitrary differential equation is derived without regardto a Lagrangian formulation of the differential equation. This relation is used inthe construction of conservation laws for partial differential equations irrespectiveof the knowledge or existence of a Lagrangian. The relation enables one toassociate symmetries to a given conservation law of a differential equation.Applications of these results are illustrated for a range of examples.  相似文献   

11.
For a theory with first and second class constraints, we propose a procedure for conversion of second class constraints based on deformation the structure of local symmetries of the Lagrangian formulation. It does not require extension or reduction of configuration space of the theory. We give examples in which the initial formulation implies a nonlinear realization of some global symmetries, therefore is not convenient. The conversion reveals hidden symmetry presented in the theory. The extra gauge freedom of conversed version is used to search for a parameterization which linearizes the equations of motion. We apply the above procedure to membrane theory (in the formulation with world-volume metric). In the resulting version, all the metric components are gauge degrees of freedom. The above procedure works also in a theory with only second class constraints presented. As an examples, we discuss arbitrary dynamical system of classical mechanics subject to kinematic constraints, O(N)O(N)-invariant nonlinear sigma-model, and the theory of massive vector field with Maxwell–Proca Lagrangian.  相似文献   

12.
We show that the conservation laws for the geodesic equation which are associated to affine symmetries can be obtained from symmetries of the Lagrangian for affinely parametrized geodesics according to Noether’s theorem, in contrast to claims found in the literature. In particular, using Aminova’s classification of affine motions of Lorentzian manifolds, we show in detail how affine motions define generalized symmetries of the geodesic Lagrangian. We compute all infinitesimal proper affine symmetries and the corresponding geodesic conservation laws for all homogeneous solutions to the Einstein field equations in four spacetime dimensions with each of the following energy–momentum contents: vacuum, cosmological constant, perfect fluid, pure radiation, and homogeneous electromagnetic fields.  相似文献   

13.
As is well known the simplest way of formulating the equations for the Yang-Mills gauge fields consists in taking the Lagrangian to be quadratic in the gauge tensor [1 - 5], whereas the application of such an approach to the gravitational field yields equations which are of essentially more complicated structure than the Einstein equations. On the other hand, in the gravitational field theory the Lagrangian can be constructed to be of forms which may be both quadratic and linear in the curvature tensor, whereas the latter possibility is absent in the current gauge field theories. In previous work [6] it has been shown that the Finslerian structure of the space-time gives rise to certain gauge fields provided that the internal symmetries may be regarded as symmetries of a three-dimensional Riemannian space. Continuing this work we show that appropriate equations for these gauge fields can be formulated in both ways, namely on the basis of the quadratic Lagrangian or, if a relevant generalization of the Palatini method is applied, on the basis of a Lagrangian linear in the gauge field strength tensor. The latter possibility proves to result in equations which are similar to the Einstein equations, a distinction being that the Finslerian Cartan curvature tensor rather than the Riemann curvature tensor enters the equations.  相似文献   

14.
After a Lagrangian system is constrained by nonholonomic constraints, the determining equations, the structure equation and the form of conserved quantities corresponding to the Lie symmetries will change. Some symmetries vanish and under certain conditions some Lie symmetries still remain.  相似文献   

15.
The general form of the Lagrangian equations of motion is derived for a spinning particle having arbitrary multipole structure in arbitrary external fields. It is then shown how these equations, together with the complete system of field equations can be recovered from a fourdimensional action integral representing a polarized dustlike medium interacting with an arbitrary set of fields. These general results are then specialized to the case of Einstein-Maxwell fields in order to obtain the general-relativistic extension of Lorentz's dielectric theory.  相似文献   

16.
Abstract

We investigate the Sundman symmetries of second-order and third-order nonlinear ordinary differential equations. These symmetries, which are in general nonlocal transformations, arise from generalised Sundman transformations of autonomous equations. We show that these transformations and symmetries can be calculated systematically and can be used to find first integrals of the equations.  相似文献   

17.
A family of perturbative Lagrangians that describe approximate and multidimensional Klein-Gordon equations are studied. We probe the existence of approximate Noether symmetries via generalized geometric conditions for a perturbation of any order. The knowledge of the geometric conditions uncovers that unlike exact symmetries, the approximate Noether symmetries of the Lagrangian which describes the motion of a particle in n-dimensional space under the action of an autonomous force, is inequivalent to the Noether symmetries admitted by the Klein-Gordon Lagrangian in general.  相似文献   

18.
In this paper we first study the equivalence transformations of class C2, regular, tensorial, quasi-linear systems of field equations which (a) preserve the continuity, regularity, and quasi-linear structure of the systems; and (b) occur within a fixed system of Minkowski coordinates and field components. We identify, among the transformations of this class, those which either induce or preserve a self-adjoint structure of the field equations and we term them genotopic and isotopic transformations, respectively. We then give the necessary and sufficient conditions for an equivalence transformation of the above type to be either genotopic or isotopic. By using this methodology, we then extend the theorem on the necessary and sufficient condition for the existence of ordered direct analytic representations introduced in the preceding paper to the case of ordered indirect analytic representations in terms of the conventional Lagrange equations; we introduce a method for the construction of a Lagrangian, when it exists, in this broader context; and we explore some implications of the underlying methodology for the problem of the structure of the Lagrangian capable of representing interactions within the framework of the indirect analytic representations. Some of the several aspects which demand an inspection prior to the use of this analytic approach in actual models are pointed out. In particular, we indicate a possible deep impact in the symmetries and conservation laws of the system generated by the use of the concept of indirect analytic representation. As a preparatory step prior to the analysis of these problems, we study some methodological aspects which underlie the generalized Lagrange equations postulated in the first paper of this series for the case when they are regular, namely, when they are simple equivalence transformations of the conventional Lagrange equations. We first introduce a generalization of the action principle capable of inducing the generalized as well as the conventional equations. In this way we establish that the former equations are “bona fide” analytic equations. Finally, as our most general analytic framework for the case of unconstrained field equations, we work out the necessary and sufficient condition for the existence of ordered direct analytic representations of quasi-linear systems in terms of the generalized analytic equations and study their relationship to the conventional representations.  相似文献   

19.
20.
A local generalized symmetry of a system of differential equations is an infinitesimal transformation depending locally upon the fields and their derivatives which carries solutions to solutions. We classify all local generalized symmetries of the vacuum Einstein equations in four spacetime dimensions. To begin, we analyze symmetries that can be built from the metric, curvature, and covariant derivatives of the curvature to any order; these are called natural symmetries and are globally defined on any spacetime manifold. We next classify first-order generalized symmetries, that is, symmetries that depend on the metric and its first derivatives. Finally, using results from the classification of natural symmetries, we reduce the classification of all higher-order generalized symmetries to the first-order case. In each case we find that the local generalized symmetries are infinitesimal generalized diffeomorphisms and constant metric scalings. There are no non-trivial conservation laws associated with these symmetries. A novel feature of our analysis is the use of a fundamental set of spinorial coordinates on the infinite jet space of Ricci-flat metrics, which are derived from Penrose's exact set of fields for the vacuum equations.Dedicated to the memory of H. Rund  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号