首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An industrial chromatographic 99Mo–99mTc generator has been developed with the aid of chromatographic alumina to obtain 99mTc in a non-aqueous medium. This generator system takes advantage of tributyl phosphate to extract 99mTc selectively with appreciable yield and in high radiochemical and radionuclidic purity. This facile, versatile and efficient approach provides 99mTc at industrial sites in a medium soluble in hydrocarbon solvents, for radiotracer applications.  相似文献   

2.
The commercial low-pressure column chromatographic 99Mo/99mTc generator represents a reliable source of onsite, ready-to-use 99mTc for industrial applications. These generators use fission-produced 99Mo of high specific activity, posing serious production challenges and raising proliferation concerns. Therefore, many concepts are aimed at using low-specific-activity (LSA) 99Mo. Nonetheless, the main roadblock is the low sorption capacity of the used alumina (Al2O3). This study investigates the feasibility of using commercial alumina incorporated with LSA 99Mo to develop a useful 99Mo/99mTc generator for industrial radiotracer applications. First, the adsorption profiles of some commercial alumina sorbents for LSA 99Mo were tested under different experimental conditions. Then, the potential materials to develop a 99Mo/99mTc generator were selected and evaluated regarding elution yield of 99mTc and purity. Among the sorbents investigated in this study, mesoporous alumina (SA-517747) presented a unique sorption-elution profile. It demonstrated a high equilibrium and dynamic sorption capacity of 148 ± 8 and 108 ± 6 mg Mo/g. Furthermore, 99mTc was eluted with high yield and adequate chemical, radiochemical, and radionuclidic purity. Therefore, this approach provides an efficient and cost-effective way to supply onsite 99mTc for radiotracer applications independent of fission-produced 99Mo technology.  相似文献   

3.
Reversed-phase high-performance liquid chromatography with u.v. detection was applied for rapid and sensitive determination of pertechnetate in99Mo/99mTc generator eluates, using a mixture solvent of acetonitrile and 0.04M aqueous acetate buffer (1/1) containing a few volume percentage of 0.5 M tetra-n-butylammonium hydroxide as the mobile phase. Employing a -bondapak C13 column, the TcO 4 species was separated, monitored with absorbance at 254 nm, and observed at the retention time of 3.5 min. The detection limit was found to be 5.2·10–10 g of Tc for each injection. Total Tc contents in the99mTc eluates from clinically-used99Mo/99mTc generator were analyzed by this technique. The99mTc (99Tc) species was separated from the contaminant99Mo. This method was found to be useful for the purification of99mTc (99Tc) as well as the determination of total Tc content.  相似文献   

4.
The radionuclide99mTc is widely used in nuclear medical diagnostics. Radiopharmaceuticals containing coordination compounds labeled with99mTc4+ or99mTc5+ can be rapidly prepared from pertechnetate eluted from a99Mo/99mTc generator. For the optimization of the imaging agent it is essential to determine the exact chemical structure of the Tc complex. This can be achieved by synthesizing macroscopic amounts of the analogous long-lived99gTc compound and by its analysis by appropriate spectroscopy methods. We have successfully synthesized and characterized new technetium complexes with amino acids and also with ligands containing nitrogen, oxygen and sulfur atoms.  相似文献   

5.
The feasibility of using tetragonal nano-zirconia (t-ZrO2) as an effective sorbent for developing a 99Mo/99mTc chromatographic generator was demonstrated. The structural characteristics of the sorbent matrix were investigated by different analytical techniques such as XRD, BET surface area analysis, FT-IR, TEM etc. The material synthesized was nanocrystalline, in tetragonal phase with an average particle size of ~7 nm and a large surface area of 340 m2 g?1. The equilibrium sorption capacity of t-ZrO2 is >250 mg Mo g?1. The present study indicates that 99Mo is both strongly and selectively retained by t-ZrO2 at acidic pH and 99mTc could be readily eluted from it, using 0.9% NaCl solution. A 9.25 GBq (250 mCi) t-ZrO2 based chromatographic 99Mo/99mTc generator was developed and its performance was repeatedly evaluated for 10 days. 99mTc could be eluted with >85% yield having acceptable radionuclidic, radiochemical and chemical purity for clinical applications. The compatibility of the product in the preparation of 99mTc labeled formulations such as 99mTc-EC and 99mTc-DMSA was evaluated and found to be satisfactory.  相似文献   

6.
A procedure for preparation of 99Mo/99mTc radioisotope generator based on low specific activity neutron activated 99Mo was developed. Aluminum molybdate(VI)-99Mo of high Mo(VI) content (~?364 mg/g Al99Mo) was prepared by mixing low specific activity molybdate(VI)-99Mo and aluminum mixture solution with isoamyl alcohol. Al99Mo gel matrix was precipitated when the pH of the mixture solution was raised to ~?5 by addition of NaOH to the mixture. Radiometric measurements indicate the strong fixation of Molybdate(VI)-99Mo species in the form of the sparingly insoluble Al99Mo gel matrix. The prepared AlMo gel matrix was physiochemically characterized. Al99Mo gel matrix was used as a base material for preparation of 99Mo/99mTc generator. The 99mTc eluted from 99Mo/99mTc radioisotope generator was found to have relatively high elution yield (84?±?2.3%), radionuclidic (≥?99.99%), radiochemical (98.1?±?0.9%) and chemical purity.  相似文献   

7.
The chemical condition of99mTc eluate obtained from a99Mo-99mTc generator is a function of the source, time elapsed after elution and age of the eluate. The radiochemical purity and stability of99mTc labeled MAb-170 (Tru-Scint®ADTM, photoactivated monoclonal antibody kit) preparations was evaluated comparing pertechnetate source of known age and elution history. The effect of H2O2, a radiolytic impurity in99mTc eluates, on the active kit components stannous ion and photoactivated MAb and radiolabeling, yield has been investigated. The lyophilized Tru-Scint® ADTM kit has been labeled with 20 to 80 mCi in 0.5 to 4.0 ml of Sodium Pertechnetate99mTc Injection, USP. The eluates were obtained from three brands of generators and used up to six hours after elution. The kits were reconstituted either with Sodium Pertechnetate99mTc Injection, USP or Sodium Chloride Injection, USP, 0.9% containing known amounts of H2O2. The reconstituted kits were analyzed for radiolabeling yield and radiochemical impurities, stannous ion and protein sulfhydryl group. The results indicated that the radiolabeling yield is a function of both the chemical condition of99mTc eluate, generator brand and the radiolabeling parameters like reconstitution volume and activity. The observed radiolabeling yield differences did not depend on the amount of chemical technetium in the eluate. The major radiochemical impurities at 15-minute post labeling have been identified as the99mTc-buffer complex and column adsorbed reduced99mTc (99mTc-Ad) species and not the unreduced99mTcO 4 .  相似文献   

8.
Carrier-free99mTcO4 eluated from clinical99Mo/99mTc generators was examined to determine its specific activity. The observed specific activity was found to be always lower than the calculated value based on the99Mo–99mTc–99Tc decay scheme data. These results could be explained in terms of existence of excess Tc loaded onto generator column.  相似文献   

9.
Evidence is obtained to show that the liquidliquid extraction separation of99mTc from99Mo with methyl ethyl ketone, methyl propyl ketone and methyl isobutyl ketone can be transformed into a solid-phase column extraction procedure. The aqueous alkaline99molybdate solution is immobilized on a column of a granular large-pore diatomaceous earch support, which is the neluted with the abovementioned extractants. Rapid and clean separation of99mTc can be with all three solvents. The99mTc can be back-extracted from the organic phase on a column filled with distilled water /or saline/ loaded granular diatomaceous earth /Extrelut®/. The possibility of using the abovementioned procedure as a basis for a new99mTc/99Mo generator concept is envisaged.  相似文献   

10.
A systematic study on the extraction of99Mo and its daughter99mTc by pure organic diluents and dinonylnaphthalinesulfonic acid (DNNS) is described. The aqueous phases used are H2SO4, HCl, KI and their binary mixture solutions. The effect of alcohols on the distribution coefficient has been investigated. As a result of the study, a simple and rapid generator is built for the production of pure99mTc from99Mo.  相似文献   

11.
Large columns containing aluminum oxide (Al2O3) or gel (e.g. zirconium molybdate) are needed to prepare 98Mo(n,γ)99Mo→99mTc column chromatographic generators that results in large elution volumes containing relatively high 99Mo impurity and low concentrations of 99mTc. The decrease in radioactive concentration or specific volume concentration of 99mTc places a limitation on some pharmaceutical kits (DTPA, MIBI, ECD, etc.) or clinical procedures. We report on the post elution concentration of 99mTc using in house prepared lead cation-exchange and alumina columns. Using these columns high bolus volumes (10–60 mL 0.02M sodium sulfate) of 99mTc can conveniently be concentrated in 1 mL of physiological saline. This approach also works very effectively to prepare high specific volume solutions of 99mTc-pertechnetate from a fission based 99Mo/99mTc generator in the second week of its normal working life.  相似文献   

12.
The adsorption behaviour of99Mo in the form of molybdate and of99mTc in the form of pertechnetate on hydrated titanium dioxide was investigated at different molarities of hydrochloric acid. The adsorption capacity of molybdate on hydrated TiO2 is higher than on Al2O3. A99mTc-generator is suggested. This generator is based on the adsorption of (99Mo) molybdate on hydrated TiO2, at acidities of 0.05–0.1M. HCl.99mTc is eluted with 0.9% NaCl. Radionuclidic, radiochemical and chemical purities of the eluates were checked. This generator seems to have a great potential as compared to the traditional alumina generators.  相似文献   

13.
A99Mo/99mTc generator, system was made with a performed titanium molybdate gel. The irradiation was carried out at a medium neutron flux of 1.5×1013 n cm–2·s–1. The irradiated matrix was loaded on top of a column composed of hydrous zirconium oxide alumina. The elution efficiency and the amount of total technetium per mCi99mTc in the generator eluents have been determined. Molybdenum breakthrough has also been determined and compared with literature values. The influence of the particle size, water content, neutron flux and molybdenum content on the total99mTc-activity has been investigated.  相似文献   

14.
A new concept of prefabricated99mTc generator has been experimentally tested as a possible procedure for local production of99mTc for medical purposes by means of the ININ-Salazar /Mexico/ Triga-Mark III reactor working at 1 MW.Temporarily at ININ as IAEA expert.  相似文献   

15.
The authors report here a new approach for making99mTc generators based on neutron irradiation of metallic molybdates and direct elution eliminating intermediate chemical processing steps. This approach tested using zirconium molybdate was found to yield99mTc with good yield and purity. This seems to be the simplest way of making column type99mTc generator even using low flux reactors and merits further detailed evaluation.  相似文献   

16.
The use of the 99Mo99mTc generator in nuclear medicine is well established world wide. The production of the 99Mo (T1/2 = 66 h) parent as a fission product of 235U is largely based on the use of reactor technology. From the early 1990's accelerator based production methods to provide either direct produced 99mTc or the parent 99Mo, were studied and suggested as potential alternatives to the reactor based production of 99Mo. A possible pathway for the charged particle production of 99mTc and 99Mo is irradiation of molybdenum metal with protons via the reaction 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo, respectively. The earlier published excitation functions show large differences in their maximum that result in large differences in the calculated yields. We therefore decided to study the excitation function for these proton-induced reactions. In this work the newly measured excitation functions as well as an evaluation of earlier measured data and a discussion of the observed disagreements are presented.  相似文献   

17.
A modified99Mo–99mTc gel generator is described. The present generator uses an insoluble zirconium molybdophosphate (ZrMP) gel tagged with99Mo. Molybdenum-99 is chemically combined in the gel structure and cannot be eluted from the matrix. The presence of phosphate increases the chemical stability of the gel and decreases the molybdenum breakthrough. The prepared gel is sufficiently porous to permit ready diffusion of99mTcO 4 which can be cluted with saline in yields of up to 90%. The gel was found to contain 25.1% Mo, 21.9% Zr, and 0.7% P in a molar ratio of 1.09:1.0:0.09, respectively. The high molybdenum content of the gel allows the use of cheap, non-polluting (n, )99Mo. The eluted99mTc was of high purity and can be used for medical and pharmaceutical applications.  相似文献   

18.
Recent disruptions in the molybdenum-technetium generator supply chain prompted a review of non-reactor based production methods for both 99Mo and 99mTc. Small medical cyclotrons (E p ~ 16–24 MeV) are capable of producing Curie quantities of 99mTc from isotopically enriched 100Mo using the 100Mo(p,2n)99mTc reaction. Unlike most other metallic target materials for routine production of medical radioisotopes, molybdenum cannot be deposited by reductive electroplating from aqueous salt solutions. To overcome this issue, we developed a new process for solid molybdenum targets based on the electrophoretic deposition of fine 100Mo powder onto a tantalum plate, followed by high temperature sintering. The targets obtained were mechanically robust and thermally stable when irradiated with protons at high power density.  相似文献   

19.
In this work alumina 99Mo-molybdate (VI) gel is evaluated as a column matrix for use in the preparation of small chromatographic column type 99mTc generator. Alumina molybdate (VI) gel is prepared by dissolving inactive MoO3 with aluminum foil in 5 M NaOH solution containing 99Mo radiotracer. After complete dissolution, 0.5 H2O2 was added to the reaction mixture solution and acidified to pH 5.5 with concentrated HNO3. The formed AlMo precipitate was washed with NaNO3 solution, dried at 50 °C for 24 h and then packed in the form of a chromatographic column for elution of the generated 99mTc radionuclide with physiological saline solution (0.9 % NaCl). Greater than 86 % of the generated 99mTc activity is immediately and reproducibly eluted with passing 10 mL of the saline solution through 2.0 g of alumina 99Mo-molybdate column bed at a flow rate of about 1.0 mL/min. The high radiochemical ≥98.6 % TcO4 ?, radionuclidic ≥99.90 % 99mTc and chemical purities of the eluates satisfy the specifications for use in nuclear medicine.  相似文献   

20.
Solvent extraction separation of99mTc from99Mo using methyl ethyl ketone(MEK) has been found to be an effective method of obtaining99mTc of medicinal purity from low specific activity99Mo. The authors have investigated the effect of alkali and molybdenum concentration on the extraction of99Mo and99mTc into methyl ethyl ketone. The possibility of methyl ethyl ketone forming enol and condensation products and its effect on the final extraction efficiency and purity of99mTc has been studied. Sodium molybdate has been found to have a good salting out effect on99mTc pertechnetate and hence99mTc extraction can be better accomplished from low specific activity99Mo solutions. The ketone seems to form traces of condensation products in the extraction procedure. These have been found to be coextracted with99mTc into MEK but did not affect the extractability of99mTc. It was observed that neutral alumina column removes these condensation products from MEK containing99mTc. Alternately these could be filtered off by acidification of the final aqueous99mTc solution. The studies indicate that under optimum experimental conditions methyl ethyl ketone separates99mTc from99Mo with high efficiency and yields99mTc of high purity suitable for use in nuclear medicine in the form of various labelled compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号