首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Truly living polymerization of isobutylene (IB) has been achieved for the first time by the use of new initiating systems comprising organic acetate-BCl3 complexes under conventional laboratory conditions in various solvents from ?10 to ?50°C. The overall rates of polymerization are very high, which necessitated the development of the incremental monomer addition (IMA) technique to demonstrate living systems. The living nature of the polymerizations was demonstrated by linear M n versus grams polyisobutylene (PIB) formed plots starting at the origin and horizontal number of polymer molecules formed versus amount of polymer formed plots. DP n obeys [IB]/[CH3COORt · BCl3]. Molecular weight distributions (MWD) are very narrow in homogeneous systems (M w/M n = 1.2–1.3) whereas somewhat broader values are obtained when the polymer precipitates out of solution (M w/M n = 1.4–3.0). The MWDs tend to narrow with increasing molecular weights, i.e., with the accumulation of precipitated polymer in the reactor. Traces of moisture do not affect the outcome of living polymerizations. In the presence of monomer both first and second order chain transfer to monomer are avoided even at ?10°C. The diagnosis of first and second order chain transfer has been accomplished, and the first order process seems to dominate. Forced termination can be effected either by thermally decomposing the propagating complexes or by nucleophiles. In either case the end groups will be tertiary chlorides. The living polymerization of isobutylene initiated by ester. BCl3 complexes most likely proceeds by a two-component group transfer polymerization.  相似文献   

2.
Truly living polymerization of isobutylene (IB) has been achieved for the first time by the use of new initiating systems comprising organic acetate-BCl3 complexes under conventional laboratory conditions in various solvents from −10 to −50°C. The overall rates of polymerization are very high, which necessitated the development of the incremental monomer addition (IMA) technique to demonstrate living systems. The living nature of the polymerizations was demonstrated by linear versus grams polyisobutylene (PIB) formed plots starting at the origin and horizontal number of polymer molecules formed versus amount of polymer formed plots. obeys [IB]/[CH3COORt · BCl3]. Molecular weight distributions (MWD) are very narrow in homogeneous systems whereas somewhat broader values are obtained when the polymer precipitates out of solution . The MWDs tend to narrow with increasing molecular weights, i.e., with the accumulation of precipitated polymer in the reactor. Traces of moisture do not affect the outcome of living polymerizations. In the presence of monomer both first and second order chain transfer to monomer are avoided even at −10°C. The diagnosis of first and second order chain transfer has been accomplished, and the first order process seems to dominate. Forced termination can be effected either by thermally decomposing the propagating complexes or by nucleophiles. In either case the end groups will be tertiary chlorides. The living polymerization of isobutylene initiated by ester · BCl3 complexes most likely proceeds by a two-component group transfer polymerization.  相似文献   

3.
The in-source polymerization of methacrylic acid in the solid state with γ-rays was studied. The conversion rates at various temperatures were obtained as well as the radical concentrations by the measurements of ESR spectrum. The rate of polymerization was found to be proportional to I0.65 at 0°C. The results could be interpreted on the basis of the assumption that the rate of propagation is proportional to the concentration of the propagating radical, of the monomer, and of the polymer. The addition of water to the monomer seems to accelerate the polymerization reaction. The change of the line shape of the propagating radical during polymerization was interpreted in terms of the change of the matrix which surrounds the propagating radical.  相似文献   

4.
The thermal bulk polymerization of methyl methacrylate (MMA) in a wide range of temperatures has been studied using a dilatometric reactor. It is shown that, irrespective of the care taken to purify the MMA, the evolution of the time-conversion curve can be explained only if we account for the presence of an impurity associated with the monomer acting as a free radical initiator. The activation energy for the decomposition of this impurity has been estimated as 98 kJ/mol. Having accounted for this impurity, the activation energy for the real thermal polymerization of the MMA has been estimated to be 75 kJ/mol. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Stereospecific polymerization of methacrylonitrile with diethylmagnesium has been studied. Polymerization temperature has an important effect on polymerization. The conversion, stereoregularity, and intrinsic viscosity of the polymer increased significantly with increasing polymerization temperature. Stereoregularity of the polymer improved with increasing the polymerization time and the monomer concentration, but it is independent of the catalyst concentration. Intrinsic viscosity of the crystalline polymer increased with increasing monomer concentration but is independent of the polymerization time and the catalyst concentration. It is suggested that two mechanisms are involved in this polymerization: coordinated anionic polymerization to from the crystalline polymer, and probably conventional anionic polymerization to form the amorphous polymer. It is found that crystalline polymer can also be obtained in homogeneous phase such as in tetrahydrofuran solvent.  相似文献   

6.
The polymerizations of 4-methyl-1-pentene(4M1P), 4-methyl-2-pentene (4M2P), 2-methyl-2-pentene (2M2P), and 2-methyl-1-pentene (2M1P) with Ziegler-Natta catalyst have been investigated. Both 4M1P and 4M2P were found to polymerize with TiCl3–(C2H5)Al catalyst to give high molecular weight poly(4M1P), while 2M2P and 2M1P did not give polymers with 4M1P units. However, when the polymerizations of 2M1P and 2M2P were carried out with ternary catalyst systems, TiCl3–(C2H5)AlCl–(PPh3)2PdCl2 and TiCl3–(C2H5)AlCl–Ni(SCN)2 polymers with 4M1P units were obtained in low yield. It was concluded that these four methylpentenes could polymerize with the monomer-isomerization polymerization mechanism to poly(4M1P). The results of the observed isomer distribution of methylpentenes recovered, and the rate of polymerization of four methylpentenes suggest that the isomerization from 2M1P to 4M1P with the above ternary catalyst systems might proceed via a direct one-step isomerization mechanism.  相似文献   

7.
The initiation mechanism on the radical polymerization of vinyl monomers by polyethyleneglycol (PEG-300) in aqueous solution was studied. The initiating radical species were determined by means of the spin trapping technique. They were concluded to be generated by the hydrogen atom transfer from the monomer adsorbed at the ether group of PEG-300 to the free monomer.  相似文献   

8.
1,4-Cyclohexadiene underwent monomer-isomerization polymerization to yield poly(1,3-cyclohexadiene) with a Ziegler-Natta catalyst comprising TiCl4–Al(C2H5)3 catalyst with Al/Ti molar ratios of 0.5–3.0 at 60°C for 96 hr. Good yields of polymer were obtained (49.5% yield at Al/Ti = 3.0; [η] = 0.04 dl/g). The infrared and NMR spectra of the polymer were identical to those of poly-(1,3-cyclohexadiene), confirming that 1,4-cyclohexadiene first isomerizes to 1,3-cyclohexadiene and then homopolymerizes to give poly-1,3-cyclohexadiene. 1,3-Cyclohexadiene polymerized without isomerization easily in the presence of TiCl3–Al(C2H5)3 catalyst at Al/Ti molar ratios of 0.5–3.0 at 60°C for 3 hr (76.3% yield at Al/Ti = 3.0; [η] = 0.06 dl/g).  相似文献   

9.
The concept of a living polymerization is critically discussed. A system ranking various classes of “livingness” is proposed, and the importance of determining the real values of ktr/kp and kt/kp ratios is expounded. New living systems, including carbocationic polymerization and group transfer polymerization of acrylates are compared with classic ionic systems. The mechanism of propagation and the nature of the true active species are similar in both new and classic polymerizations. The role of various components which improve the “livingness” of the polymerizations is discussed and explained by dynamic equilibration between dormant and active species and suppression of side reactions.  相似文献   

10.
11.
Photopolymerization of cyclohexene oxide in the presence of electron acceptors was studied in a bulk system (in liquid as well as in solid states). The polymerization was proved to proceed by a cationic mechanism in both states by the effect of inhibitors. In a liquid phase the light intensity dependence of the rate of polymerization and the molecular weight distribution showed a contribution of a free ionic polymerization. Any discontinuous phenomenon in the rate as well as in the molecular weight was not discerned between liquid(above ?36°C) and plastic crystal (between ?36 and ?81°C) phases. A quantum yield of monomer consumption as high as 8 × 103 was observed in the plastic crystal phase. Below ?81°C in the normal crystal phase the rate as well as the molecular weight was remarkably suppressed.  相似文献   

12.
13.
The mechanism of emulsion polymerization of acrylonitrile has been studied by measuring by dilatometry and electron microscopy the adsorption of monomer into polymer particles and polymerization characteristics such as rate, degree of polymerization, the growth of the particle during polymerization, and the degree of dispersion. In the emulsion polymerization of acrylonitrile, new particles are formed during polymerization at a rate which is proportional to the rate of polymerization and the ratio of unreacted monomer. The total amount of monomer adsorbed on or in the polymer particles is rather small, but the concentration on or in the polymer particles is sufficiently high and proportional to the monomer concentration in aqueous phase. The polymerization proceeds concurrently on or in the polymer particles and in aqueous phase, but the three loci may be continuous rather than discrete. A reaction scheme is introduced here which shows the coexistence of polymerizations on or in the polymer particles and in the aqueous phase.  相似文献   

14.
The polymerization of isobutylene with BF3, BCl3, and BBr3 coinitiators has been investigated. The polymerization with BCl3 requires the presence of a cationogen, e.g., H2O. The presence of a polar solvent is also necessary. Surprisingly, large quantities of polar solvent are required for effective polymerization. To obtain high conversions, the mixing sequence of the reagents is critical: BCI3 must be added last to charges containing the monomer and H2O in a polar solvent. Ultimate conversions increase by decreasing the temperature. Kinetic termination exists. Experiments with BF3 and BBr3 revealed that polymerizations induced with BF3 proceed in nonpolar and/or polar media. Polymerization stops with BF3 at less than complete conversion (termination exists). In contrast to findings with BCl3, polymer yields with BF3 increase with increasing temperatures. BBr3 is a very inefficient coinitiator, even in the presence of polar solvent, over the ?10 to ?90°C temperature range. A hypothesis which explains these observations has been developed.  相似文献   

15.
The number-average and weight-average degrees of polymerization at the end of the polymerization process have been calculated in terms of the initial monomer concentration, initial catalyst concentration, and rate constants for various polymerization processes, all of which assume instantaneous initiation. The mechanisms differ among themselves in that there is either first-order catalyst deactivation, or transfer to monomer, or both. The calculation is greatly simplified if only the molecular weights at the end of polymerization are considered. The method given is particularly useful for systems where the calculation of the distribution function as a function of time is complicated. The fact that the monomer concentration and catalyst concentration have a marked effect on the molecular weight provides a good test of the validity of the mechanism under consideration. A comparison of the calculated and observed molecular weights obtained for the homogeneous polymerization of acrylonitrile with an organometallic catalyst will be given in a later communication.  相似文献   

16.
The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by Tg (glass transition temperature) and Tv of the system (30–50°C higher than Tg), which turned to be functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the Tg of the glass-forming solvent. The composition and temperature dependences in the glycidyl methacrylate–triacetin system as a typical homogeneous polymerization system were studied in detail, and the polymerizations of hydroxyethyl methacrylate–triacetin and hydroxyethyl methacrylate–isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower Tg monomer and higher Tg solvent and the latter typifies a system consisting of higher Tg monomer and lower Tg solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to Tv and Tg of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect.  相似文献   

17.
18.
The kinetics of radiation polymerization on a solid catalyst is discussed, under the condition that only linear termination of the chain takes place. All the kinetic equations are balance equations of particles of each type adsorbed by unit mass of the catalyst, and this makes it possible to account for the effect on the kinetics of the time dependence of the magnitude of the part of its surface on which the reactions we are considering may take place. Integro-differential equations are used for calculating the molecular weight distribution of the resulting polymer; this ensures higher accuracy of the formulas obtained than when differential equations are used and makes it possible to eliminate a number of limitations generally involved in the transition to differential equations. An expression has been found for the molecular weight distribution of the polymer product which allows for the possibility of radiation-induced catalytic polymerization on the resulting adsorbed polymer. Expressions have been derived for the average molecular weight and yield (weight and molecular) of the polymer formed. Asymptotic formulas have been obtained (for large irradiation times) for all the above values. The conclusions that can be drawn concerning the mechanism of the process based on a comparison of the formulas obtained with kinetic curves plotted from experimental data are given. It is shown how such a comparison can be utilized for calculating the rate constants for polymerization and chain termination reactions.  相似文献   

19.
20.
Cationic polymerizations of trioxane in 1,2‐ethylene dichloride and benzene were heterogeneous and reversible. Phase separation accompanying with crystallization occurred during the polymerization. Three morphological changes were found in the course of the polymerization as were investigated by dilatometry and precipitation method. Based on the findings of morphological changes and three reversible processes for the polymerization, a rate equation was proposed to describe the polymerization. The proposed rate equation was fairly good in describing the experimental data, and kinetics constants including Kp, Kd, Kp′, Kd′, M, M, and Kdis/Kcr for the polymerization at 30, 40, and 50°C in 1,2‐ethylene dichloride and benzene were obtained. Factors that affected the kinetics constants were discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 483–492, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号