首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three possible ring-monofluorinated N-methylimidazoles have been prepared by photochemical irradiation of the corresponding diazonium tetrafluoroborates. 5-Fluoro-1-methyl-imidazole was also obtained by methylation of 1-acetyl-4-fluoroimidazole. The 1H and 19F nmr spectra of these N-methylated fluoroazoles are compared, and the predominance of one tautomeric form in 4(5)-fluoroimidazole is discussed.  相似文献   

2.
We measured the 15N-, 1H-, and 13C-NMR chemical shifts for a series of aromatic diamines and aromatic tetracarboxylic dianhydrides dissolved in DMSO-d6, and discuss the relationships between these chemical shifts and the rate constants of acylation (k) as well as such electronic-property-related parameters such as ionization potential (IP), electronic affinity (EA), and the energy ε of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The 15N chemical shifts of the amino group of diamines (δN) depend monotonically on the logarithm of k (log k) and on IP. We inferred the reactivities of diamines whose acylation rates have not been measured from their δN, and we propose an arrangement of diamines in the order of their reactivity. The 1H chemical shift of amino hydrogens (δH) and the 13C chemical shift of carbons bonded to nitrogen (δC) are roughly proportional to δN, but these shifts are not as closely correlated with log k and IP. Although the 13C chemical shifts of the carbonyl carbon of dianhydrides (δC,) varies much less than the δC and δN of diamines, δC, can be an index of acylation reactivity for dianhydrides because it is closely correlated with εLUMO. These facts indicate that the chemical shifts of diamines and dianhydrides are displaced according to their electron-donor and electron-acceptor properties, and that these chemical shifts can be used as indices of the electronic properties of monomers. Changes in reactivity caused by the introduction of trifluoromethyl groups into diamines and dianhydrides are inferred from the displacements of δN and δC © 1992 John Wiley & Sons, Inc.  相似文献   

3.
8,9-Dihydrodipyrazolo[3,4-b:4′,3′-f][1,5]diazocin-10(1H)-ones 7 were prepared by cyclization of 1-ethyl-N,3-dimethyl-4-acetamido-N-(1-R1-3-R2-1H-pyrazol-5-yl)-1H-pyrazole-5-carboxamides 6 by a Bischler-Napieralski cyclization. A complete assignment of the chemical shifts to the carbon atoms of compound 7 was performed by different nmr experiments, such as DEPT and XHDEPT for one? bond C? H correlations and COLOC experiments for long-range C-H correlations.  相似文献   

4.
13C chemical shifts of nine N-substituted 2-amino-4H-3,1-benzoxazin-4-ones, the isomeric 3-substituted 2,4-(1H,3H)quinazolinediones, and the parent compounds of the two series are reported. Support is provided for the endocyclic position of the C=N bond in the former series of compounds.  相似文献   

5.
Reaction of N-methylaniline with 40% glyoxal yields 1-methyl-2-(N-methyl-N-phenylglycyl)-3-(N-methylanilino)indole ( 1a ) as the main product together with 1-methyl-3-(N-methylanilino)indole ( 1b ). The reaction appears to be general for aromatic secondary amines since N-ethylaniline and N-phenylbenzylamine yield the corresponding indoles. The structure of 1a has been verified by single crystal X-ray diffraction. Compound 1a (C25H25N3O) crystallized in the triclinic space group Pl? with cell dimensions a = 10.085(3)Å, b = 10.371(3)Å, c = 11.908(5)Å, α = 74.2(3)°, β = 74.7(3)° and γ = 60.7(2)° with Z = 2. The complete 1H and 13C nmr assignment of indoles 1a and 1b was achieved from two-dimensional HETCOR and COSY spectra with the aid of homonuclear and heteronuclear double resonance experiments.  相似文献   

6.
The synthesis of 7′-aryl-7′-apo-β-carotenes, where aryl (Ar) is Ph, 4-NO2C6H4, 4-MeOC6H4, 4-(MeO2C)C6H4, C6F5, and 2,4,6-Me3C6H2, is described. NMR Chemical shifts of all H- and C-atoms are presented, together with specific examples of the spectra. In contrast to 1H chemical shifts which, except for H? C(8′) and H? C(7′), did not differ greatly from those of β,β-carotene, considerable variations in 13C chemical shifts were observed. Signals of the C(α) atoms of the polyene chain [C(β)? C(α)] +n Ar were shielded, those of the C(β) atoms were deshielded, with some exceptions when n = 1; the effects decreased with increasing n.  相似文献   

7.
Three coordination polymers, {[Co(C10H5N3O5)(H2O)2]·H2O}n (1), {[Mn3(C10H5N3O5)2Cl2(H2O)6]·2H2O}n (2), and {[Cu3(C10H4N3O5)2(H2O)3]·4H2O}n (3), based on a T-shaped tripodal ligand 4-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine 1-oxide (H3DCImPyO), were synthesized under hydrothermal conditions. The polymers showed diverse coordination modes, being characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray structure analysis. In 1, the HDCImPyO2? generated a 1-D chain by adopting a μ2-kN, O : kN′, O′ coordination mode to bridge two Co(II) ions in two bis-N,O-chelating modes. In 2, the HDCImPyO2? adopted a μ3-kN, O : kO′, O′′ : O′′′ coordination mode to bridge two crystallographically independent Mn(II) ions, forming a 2-D hcb network with {63} topology. In 3, by adopting μ4-kN, O : kO′, O′′ : kN′′, O′′′ : O′′′′ coordination, DCImPyO3? bridged three crystallographically independent Cu(II) ions to form a 3-D framework having the stb topology.  相似文献   

8.
Reactions of N-tosylimidoyl chlorides with the Schiff bases of the general formula TsNH(CH2)nN=CHR (n = 2 or 3; R = Pri, 4-MeOC6H4, 4-Me2NC6H4, and 3-O2NC6H4) afforded 2-substituted 1-tosyl-3-(1-tosyliminoalkyl)imidazolidines (n = 2) or-hexahydropyrimidines (n = 3). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 872–875, May, 2006.  相似文献   

9.
1H, 13C, 15N and 195Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2′)‐chelated, deprotonated 2‐phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl2], trans(N,N)‐[Pt(2ppy*)(2ppy)Cl] and trans(S,N)‐[Pt(2ppy*)(DMSO‐d6)Cl] (formed in situ upon dissolving [Pt(2ppy*)(µ‐Cl)]2 in DMSO‐d6) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Δ1Hcoord = δ1Hcomplex ? δ1Hligand, Δ13Ccoord = δ13Ccomplex ? δ13Cligand, Δ15Ncoord = δ15Ncomplex ? δ15Nligand), as well as 195Pt chemical shifts and 1H‐195Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen‐adjacent H(6) protons and metallated C(2′) atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride ( 1 , C17H26NO+·Cl?, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride ( 2 ; C16H24NO+·Cl?, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride ( 3 ; C13H20NO+·Cl?, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1 – 3 .  相似文献   

11.
The preparation of ylides of the general structure is described. Thermolysis of 14a (R = CH3, R' = H, Ar = C6H5) gave dimethylamine and 2,4-dimethyl-6-phenyl-s-triazine. Thermolysis of ylides 14b (R = C6H5; R' = CH3, Ar = C6H5) and 14c (R = C6H5, R' = CH3, Ar = p-tolyl) gave dimethylamine, ArCH = NCH3 and 1-methyl-2-Ar-4,6-diphenyl-1,2-dihydro-s-triazines ( 19a,b ). Triazines 19a and 19b were also prepared by condensation of N-methylbenzamidine with benzaldehyde and p-tolualdehyde, respectively. Thermolysis of 14d (R = C6H5, R1 = CH2C6H5,Ar = C6H5) gave 1-benzyl-2,4,6-triphenyl-1,2-dihydro-s-triazine ( 19c ) and N-benzylidenebenzylamine. Mechanistic aspects of these reactions are discussed.  相似文献   

12.
The 13C chemical shifts of 2-substituted and 2,6-disubstituted anthraquinones have been determined and assigned. The C-1, 2, 3, 4, 13 and C-14 chemical shifts of 2-substituted anthraquinones are correlated with the chemical shifts of monosubstituted benzenes. A three-parameter correlation with Swain and Lupton's ? and ? parameters and Schaefer's Q parameter provides relationships for the prediction of all chemical shifts of 2-substituted anthraquinones from the substituent parameters. Q values for the SCH3, OCOCH3, C2H5 and C(CH3)3 groups are proposed. The two types of correlations are compared for predicting chemical shifts.  相似文献   

13.
1H-NMR data (11.74 Tesla) for the gold(I) complexes [R3P-Au-(2,3,4, 6-tetra-O-acetyl-1-thio-β-D -glucopyranosido-S)] (R = Et, Cyclohexyl, C6H5, p-CH3OC6H4) with sulfur coordination to gold, are reported. The resonances associated with the sugar protons have been assigned although these have similar chemical environments. The coordination chemical shifts, Δδ, for the Au? S? C? H proton are ≈? 0.6 ppm, and support S-coordination to gold.  相似文献   

14.
Summary 1H n.m.r. spectra of coordinated ethylenediamine HN< hydrogens for 23trans-[Co(en)2XY]n+ complexes and1H-2H exchange rates for some selected compounds are reported in the solvent liquid ammonia. Assignments are presented for asymmetric complexes. These are based on the chemical shift order of the symmetric complexes. The assignments are confirmed by independent experimental findings including the effect of specific ion-association and the observed exchange rates. The exchange rates follow the relation kobsd=k0+k1 [N2H4ClO4]–1, illustrative of general base-catalysis; in this case rate-determining proton abstraction by N2H3 and N2H 2 , respectively. Chemical shifts and exchange rates in liquid ammonia follow the published order of the aqueous parameters.  相似文献   

15.
All carbon-13 chemical shifts for 11 para-substituted N,N-dimethylbenzamides in 1 mole % chloroform solution are reported, with assignments based upon double resonance experiments, analogy to chemical shifts of benzamide, and self-consistency between experimental and calculated values using recognized substituent parameters. In contrast to earlier reports, the aryl carbon chemical shift assignments for N,N-dimethylbenzamide are C-2, 127.0; C-3, 128.7; C-4, 129.4, and for p-chloro-N,N-dimethylbenzamide are C-1, 134.6; C-4, 135.5 ppm, relative to internal TMS. Good Hammett correlations (σp) are reported for 13C chemical shifts of C-1 (σ = 11.9 ppm) and even for the carbonyl group (σ = ?2.3 ppm) but are markedly improved if correlated with σp+ (σ = 9.5 ppm) and Dewar's F (σ = ?1.9 ppm), respectively. Excellent Swain–Lupton F and R correlations were found for some of the 13C chemical shifts and yielded values for percent resonance contributions to transmission of substituent effects as follows, C-1, 75 ± 4%; C-2, 51 ± 3%; C?O, 31±2%. These are compared to similar values calculated from the C?O of benzoic acids of 34±10%, and from the nitrogen-15 chemical shifts of benzamides of 56±2%. Correlations of these 13C δ values and 15N δ values with rotation barriers (ΔG) for N,N-dimethylbenzamides were examined, and it was found that while C?O δ values correlated only poorly the C-1 δ values correlated very well, but the best correlation was for 15N δ values of benzamides. It is suggested that Δ G and δ 15N are intrinsically related due to their numerical correlation, and the close similarity in percent resonance contribution of substituent influence on these parameters.  相似文献   

16.
Single crystals of the aluminium and gallium complexes of 6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenol), namely diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)aluminium(III) nitrate ethanol monosolvate, [Al(C22H18N2O4)(H2O)2]NO3·C2H5OH, 1 , and diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)gallium(III) nitrate ethanol monosolvate, [Ga(C22H18N2O4)(H2O)2]NO3·C2H5OH, 2 , were obtained after successful synthesis in ethanol. Both complexes crystallized in the triclinic space group P, with two molecules in the asymmetric unit. In both structures, in one of the independent molecules the tetradentate ligand is almost planar while in the other independent molecule the ligand shows significant distortions from planarity, as illustrated by the largest distance from the plane constructed through the central metal atom and the O,N,N′,O′‐coordinating atoms of the ligand in 1 of 1.155 (3) Å and a distance of 1.1707 (3) Å in 2 . The possible reason for this is that there are various strong π‐interactions in the structures. This was confirmed by density functional theory (DFT) calculations, as were the other crystallographic data. DFT was also used to predict the outcome of cyclic voltammetry experiments. Ligand oxidation is more stabilized in the gallium complex. Solid‐state photoluminescence gave an 80 nm red‐shifted spectrum for the gallium complex, whereas the aluminium complex maintains the ligand curve with a smaller red shift of 40 nm.  相似文献   

17.
Reduction of 1,2-Bis[(Z)-(2-nitrophenyl)-NNO-azoxy]benzene1: Synthesis of Cyclotrisazobenzene ( = (5E,6aZ,11E,12aZ,17E,18aZ)-5,6,11,12,17,18-Hexaazatribenzo[aei][1,3,5,7,9,11]cyclododeca-hexaene) Na2S reduction of 1,2-bis[(Z)-(2-nitrophenyl)-NNO-azoxy]benzene ( 2 ) yielded 3 deoxygenated products: the (known) red 2,2′-((E,E)-1,2-phenylenbisazo)dianiline ( 3 , 23%), the orange 2-[2-((E)-2-aminophenylazo)phenyl]-2H-benzotriazol ( 4 , 55%) and the colorless 2,2′-(1,2-phenylene)di-2H-benzotriazol ( 5 , 13%). The constitutions of 3 – 5 and of 6 , the N-acetyl derivative of 4 , were deduced from their 1H-NMR spectra (chemical shifts, couplings, and symmetry properties), and the configurations of 3 , 4 , and 6 at their N,N-double bonds are assumed to be the same as in 2 . Oxidation of 3 with 2 mol-equiv. of Pb(OAc)4 afforded 5 (47%) and a novel, highly symmetrical macrocycle, called cyclotrisazobenzene ( 7 , 24%). The constitution of 7 as a tribenzo-hexaaza[12]annulene and its (E)-configuration at the N,N-bonds was confirmed by X-ray analysis. The molecular symmetry expressed by the 1H-, 13C- and 15N-NMR spectra of 7 reveals a rapid torsional motion around the six N,C bonds. This implies that the N,N-double bonds in the cyclic 12π-electron system (or 24π-electron system if the benzene rings are included) of 7 are highly localized.  相似文献   

18.
The mass spectrometric behaviour of 1-aryl-5-(1-acyl-2-dialkylaminovinyl)-1H-tetrazoles was studied, especially using 1-phenyl-5-(1-benzoyl-2-dimethylaminovinyl)-1H-tetrazole 1 and its D-and 15N-labeled derivatives. All tetrazoles investigated showed a clearly observable molecular ion and underwent as the main fragmentation the elimination of nitrogen followed by a number of various subsequent processes. Besides, primary fragments such as [M ? N3?]+ and [M — ArN3]+? were also observed.  相似文献   

19.
The solid-state structure of Boc-Gly-Trp-Ala-OBut was determined by single-crystal X-ray diffraction analysis. The tripeptide gave crystals belonging to the orthorhombic systemP212121 and at 122.0(5) K:a=11.0663(12),b=14.107(2),c=17.275(2) Å,V=2697.0(5) Å3Z=4,R(F)=0.0259, andR w(F)=0.0695. The peptide adopts a type-I-turn in the solid state with a single, rather weak, intramolecular hydrogen bond between the Boc-CO and Ala-NH groups (NO 3.082(1) Å, <NHO 167(1)°). The conformation of the Boc-Gly-Trp-Ala-OBut peptide has also been studied by1H NMR spectroscopy. The solvent and temperature dependencies of NH chemical shifts suggests that this hydrogen bond is broken and that all amide protons are solvent exposed in CDCl3 and (CD3)2SO.  相似文献   

20.
1H, 13C, 15N and 17O NMR chemical shifts are used for the characterization of the intramolecular interactions in several nitramines of the Me2N-G-NO2 type. The charge of lone electron pair of the amino group in N,N-dimethylnitramine, N,N-dimethyl-2-nitroethenamine, N,N-dimethyl-p-nitroaniline, 4-nitro-β-dimethylaminostyrene, 4-N,N-dimethylamino-β-nitrostyrene, 4-(N,N-dimethylamino)-4′-nitrobiphenyl, and 4-(N,N-dimethylamino)-4′-nitrostilbene is transferred not only to the nitro oxygens, but also to the vinylene and benzene carbons of the G spacer and to N-methyl carbons as well. Decreased nuclear shielding is found to be qualitatively related to the decreased atomic charge around a nucleus. This finding was further verified and quantified by comparison of the NMR data with those obtained by ab initio quantum chemical calculations. 17O NMR chemical shift changes seem to be more significant when the interacting NMe2 and NO2 groups are separated by a short spacer. On the other hand, 15N NMR chemical shifts suggest that a decrease of the charge at the amino nitrogen is not related to the length of the spacer alone. A lack of the linear dependence between the 17Onitro and 15Namino chemical shifts suggests that the charge lost by the amino nitrogen was only partially gained by the oxygens in the nitro group. The increased shieldings of the aryl carbons in 4-(N,N-dimethylamino)-4′-nitrobiphenyl indicate that atoms of the p,p-biphenylene spacer also gain some charge originating from the amino nitrogen. 3 J H,H spin–spin coupling constant shows that among different vinylene compounds, the charge transfer to the nitro group is practically effective only in N,N-dimethyl-2-nitroethenamine where the bond between the vinylene carbons is significantly of low order by character. The calculated Natural Population Analysis (NPA) data confirms that except the nitro oxygens, other atoms that receive the negative charge lost by NMe2 in the compounds studied are the aryl and N-methyl carbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号