首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel amino-dithiaphospholane complexes of ruthenium, iridium, and rhodium were synthesized, and their properties were studied. Reaction of the new amino-dithiaphospholane (RS)2 (R = binaphthyl, R′ = CH2Ph, (rac)-4) with [RuCl2(p-cymene)]2 afforded [RuCl2(p-cymene)((rac)-4)] in 67% isolated yield. Similarly, the new amino-dithiaphospholanes (RS)2 (R = cyclohexyl, (rac)-7) and (RS)2 (R = phenyl, 9) gave upon reaction with [RhCl(CO)2]2 and [IrCpCl2]2 the novel complexes [RhCl(CO)(L)2] and [IrCpCl2(L)] (L = (rac)-7, 9) in 61-96% yields. The ruthenium complex is catalytically active for the etherification of propargylic alcohols with methanol and ethanol (8-48 h, 90 °C, 40-85% isolated yields).  相似文献   

2.
Summary The reactions of SO2 with chlorocarbonyls of rhodium and iridium ([M(CO)2Cl2] and ruthenium ([Ru(CO)2–Cl2]n) ions were studied. Addition of either the Ph4As+ cation or the nitrogen-donor ligands 2,2-bipyridine (bipy),o-phenylenediamine (opd), 1,10-phenanthroline (phen), 2,2,6,2-terpyridine (terpy) or 6,7-dihydro-1,4-di(2-pyridyl)-5H-cyclopenta {d}-pyridazine (5-dppn) to the SO2– treated chlorocarbonyl solutions resulted in the formation of various complexes according to the nature of metal and ligand. The products have been characterized by physicochemical methods.  相似文献   

3.
Summary The syntheses of the ethyltetramethylcyclopentadienyl complexes Ru(5-C5Me4Et)(CO)2Cl, CO( 5-C5Me4Et)(CO)2, and [M( 5-C5Me4Et)Cl2]2 (M = Rh or Ir) are described; the ruthenium complex reacts with triphenylarsine to give Ru( 5-C5Me4Et)(AsPh3)(CO)Cl.1H and13C n.m.r. spectra, i.r. spectra and the physical properties of the compounds are discussed and contrasted with the known C5H5 and C5Me5 analogues.  相似文献   

4.
5.
The reactions between four very simply substituted phospholes and the chlorides of Ni(II), Pd(II) and Pt(II) are described. The phospholes 1-phenylphosphole, 3-methyl-1-phenyl-phosphole and 3,4dimethyl-1-phenylphosphole all readily form bis-complexes of formula L2MCl2 [L = phosphole ligand and M = Ni(II), Pd(II) or Pt(II)] or tris-complexes of formula L3MCI2. 1-n-Butyl-3,4-dimethylphosphole appears to form stable complexes only with Ni(II). Evidence is put forward which indicates that the L2MCl2 complexes exist in a four-coordinate, square-planar monomeric/five coordinate equilibrium while the L3MCl2 complexes are primarily the ionic species [L3MCl]+ Cl? in solution. Comparisons are made with the behaviour of other simple phospholes which do not form Ni(II) complexes and the results are discussed briefly in terms of both aromatic and non-aromatic phosphole models.  相似文献   

6.
Summary Complexes of thiophene-2-carboxaldehyde thiosemicarbazone with RuIII, RhIII, IrIII and PtIV have been prepared and characterized by elemental analyses, molar conductance, room temperature, magnetic moments, infrared and electronic spectral studies. Probable structures for the complexes are suggested. All are diamagnetic except the RuIII complexes and possess octahedral structures. The crystal field parameters of the complexes have also been calculated.  相似文献   

7.
Solvent extraction of rhodium,ruthenium, and iridium with HDEHP   总被引:1,自引:0,他引:1  
Solvent extraction of rhodium, ruthenium, and iridium with HDEHP from thioureachloride media was investigated. Under the conditions ([Cl]=0.50 M, [HDEHP]=1.0M, [SC(NH2)2]=0.50M, pH=4.50, phase contact time 1 min), Rh(III) is extracted 88.3%, Ru(III) and Ir(III) 40.8% and 28.5% respectively at phase ratio 11. The formation of rhodium-thiourea complexes in aqueous solutions, even at 5M chloride concentration, with the possible composition Rh[SC (NH2)2]6 3+ is confirmed by the observed molar ratio of thiourea to rhodium and UV-spectra.  相似文献   

8.
We herein present a series of d(7) trimethylphosphine complexes of group 9 metals that are chelated by the tripodal tetradentate tris(phosphino)silyl ligand [SiP(iPr)(3)]H ([SiP(iPr)(3)] = (2-iPr(2)PC(6)H(4))(3)Si(-)). Both electron paramagnetic resonance (EPR) simulations and density functional theory (DFT) calculations indicate largely metalloradical character. These complexes provide a rare opportunity to compare the properties between the low-valent metalloradicals of the second- and third-row transition metals with the corresponding first-row analogues.  相似文献   

9.
Co-condensation of atoms of Re, Ru, Rh, Ir and Pt with oxalyl chloride gives metal chloro-carbonyl derivatives which may be used as precursors to the compounds [Re(CO)4Cl]2, [Ru(PMe3)3(CO)Cl2], α-[Ru(CO)3Cl(μ-Cl)]2, [Ru(PPh3)2(CO)2Cl2], [Rh(CO)2(μ-Cl)]2, [Rh(PPh3)2COCl], [Ir(PPh3)(CO)2Cl3] and cis-Pt(CO)2Cl2. Molybdenum atoms with oxalyl chloride give molybdenum-chloro derivatives.  相似文献   

10.
C? H activation by acetate‐assisted cyclometallation of a phenyl group with half‐sandwich complexes [{MCl2Cp*}2] (M=Ir, Rh) and [{RuCl2(p‐cymene)}2] can be directed by a wide range of nitrogen donor ligands including pyrazole, oxazoline, oxime, imidazole and triazole, and X‐ray structures of a number of complexes are reported. All the ligands tested cyclometallated at iridium, however ruthenium and rhodium fail to cause cyclometallation in some cases. As a result, the nitrogen donors have been categorised based on their reactivity with the three metals used. The relevance of these cyclometallation reactions to catalytic synthesis of carbocycles and heterocycles is discussed.  相似文献   

11.
The possibility of activation of the C-H bond by dinuclear phosphine bridged complexes of rhodium, iridium, and ruthenium is considered.This work was reported at the conference Modern Problems of Organometallic Chemistry (8–13 May, 1994, Moscow).Institut fer Technische Chemie und Petrolchemie der RWTH Aachen Worringerweg 1, 52074 Aachen, Deutschland.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 589–593, April, 1994.  相似文献   

12.
Syntheses of Co2Rh2(CO)8(PF3)4 and Co2Rh2(CO)10(PF3)2 are described and their structures are discussed. Evidence is presented for an intermolecular ligand exchange between several tetranuclear cluster complexes. 19F and 31P NMR and mass spectroscopic data are presented and discussed. The complexes Rh4(CO)4(PF3)8 and Co2Ir2(CO)8(PF3)4 have been identified by their mass spectra.  相似文献   

13.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

14.
A series of 2-methyl, 4-methyl, and 2,4-dimethyl-8-quinolineselenolates of ruthenium, rhodium, osmium, and iridium has been synthesized and their cytotoxicity towards HT-1080 (human fibrosarcoma) and MG-22A (mouse hepatoma) tumor cells studied. It was found that all of the osmium complexes had a high cytotoxicity towards both cell lines. Their toxicity towards the normal mouse embryonic fibroblasts NIH-3T3 depends on the position and number of methyl groups in the quinoline ring and decreases in the order 2-Me > 4-Me > 2,4-Me2. The greatest selectivity in cytoxic activity is noted for iridium 4-methyl-8-quinolineselenolate and ruthenium 2-methyl-8-quinolineselenolate. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 230–236, February, 2009.  相似文献   

15.
King RB 《Inorganic chemistry》2004,43(14):4241-4247
Most cyclopentadienylmetallaboranes containing the vertex units CpM (M = Co, Rh, Ir; Cp = eta(5)-cyclopentadienyl ring, mainly eta(5)-Me(5)C(5)) and CpRu donating two and one skeletal electrons, respectively, have structures closely related to binary boranes or borane anions. Smaller clusters of this type, such as metallaborane analogues of arachno-B(4)H(10) (e.g., (CpIr)(2)B(2)H(8)), nido-B(5)H(9) (e.g., (CpRh)(2)B(3)H(7) and (CpRu)(2)B(3)H(9)), arachno-B(5)H(11) (e.g., CpIrB(4)H(10)), B(6)H(6)(2)(-) (e.g., (CpCo)(4)B(2)H(4)), nido-B(6)H(10) (e.g., CpIrB(5)H(9) and (CpRu)(2)B(4)H(10)), and arachno-B(6)H(12) (e.g., (CpIr)(2)B(4)H(10)), have the same skeletal electron counts as those of the corresponding boranes. However, such clusters with eight or more vertices, such as metallaborane analogues of B(8)H(8)(2)(-) (e.g., (CpCo)(4)B(4)H(4)), arachno-B(8)H(14) (e.g., (CpRu)(2)B(6)H(12)), and nido-B(10)H(14) (e.g., (CpRu)(2)B(8)H(12)), have two skeletal electrons less than those of the corresponding metal-free boranes, analogous to the skeletal electron counts of isocloso boranes relative to those of metal-free deltahedral boranes. Some metallaboranes have structures not analogous to metal-free boranes but instead analogous to metal carbonyl clusters such as 3-capped square pyramidal (CpRu)(2)B(4)H(8) and (CpRu)(3)B(3)H(8) analogous to H(2)Os(6)(CO)(16) and capped octahedral (CpRh)(3)B(4)H(4) analogous to Os(7)(CO)(21). In the metallaborane structures closely related to metal-free boranes, the favored degrees of BH and CpM vertices appear to be 5 and 6, respectively.  相似文献   

16.
17.
This review describes how the incorporation of dicarba-closo-dodecarboranes into half-sandwich complexes of ruthenium, osmium, rhodium and iridium might lead to the development of a new class of compounds with applications in medicine. Such a combination not only has unexplored potential in traditional areas such as Boron Neutron Capture Therapy agents, but also as pharmacophores for the targeting of biologically important proteins and the development of targeted drugs. The synthetic pathways used for the syntheses of dicarba-closo-dodecarboranes-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium are also reviewed. Complexes with a wide variety of geometries and characteristics can be prepared. Examples of addition reactions on the metal centre, B-H activation, transmetalation reactions and/or direct formation of metal-metal bonds are discussed (103 references).  相似文献   

18.
The synthesis of linear multiporphyrin arrays with mono- and bisphosphine-substituted porphyrins as ligand donors and ruthenium(II) or rhodium(III) porphyrins as ligand acceptors is described. With appropriate amounts of the building blocks mixed, linear dimeric and trimeric arrays have been synthesized and analyzed by (1)H NMR and (31)P NMR spectroscopy. The Ru/Rh acceptor porphyrins can be located either at the periphery or in the center of the array. Likewise, the monophosphine porphyrins can be positioned at the periphery, thus allowing a high degree of freedom in the overall composition of the arrays. This way, both donor and acceptor porphyrins can act as chain extenders or terminators. One of the trimeric complexes with two nickel and one ruthenium porphyrin has also been analyzed by X-ray crystallography. Attempts have also been made to synthesize higher order arrays by mixing appropriate amounts of the porphyrins; however, from the NMR data it cannot be concluded if monodisperse five, seven, or nine porphyrin arrays are present or if the solutions are composed of a statistical mixture of smaller and larger arrays.  相似文献   

19.
Solvent extraction of rhodium, ruthenium and iridium with di(2-ethylhexyl)phosphoric acid (HDEHP) has been investigated. Under the conditions [Cl–1]=0.20M, [(HDEHP)2]=0.30M, pH 4.05, phase contact time 1 minutes, Rh(III) is extracted 90.7%, Ru(III) and Ir(III) 20.0% and 11.5%, respectively, at phase ratio 11. The distribution ratio of rhodium is proportional to [(HDEHP)2]3 for a freshly prepared aqueous phase with low chloride concentration but might drop to [(HDEHP)2]1to2 for an aqueous phase high in chloride concentration and after standing. The spectroscopic studies indicate that the extracted compound of rhodium is Rh(H2O)6–x Cl x [H(DEHP)2]3–x (x=0, 1, 2).  相似文献   

20.
The synthesis of half-sandwich transition-metal complexes containing the Cab(N) and Cab(N,S) chelate ligands (HCab(N) = HC2B10H10CH2C5H4N (1), LiCab(N,S) = LiSC2B10H10CH2C5H4N (4)) is described. Compounds 1 and 4 were treated with chloride-bridged dimers [{Ir(Cp*)Cl2}2] (Cp* = eta5-C5Me5), [{Ru(p-cymene)Cl2}2] and [{Rh(Cp*)Cl2}2] to give half-sandwich complexes [Ir(Cp*)Cl(Cab(N))] (2), [Ru(p-cymene)Cl(Cab(N))] (3), and [Rh(Cp*)Cl(Cab(N,S))] (5), respectively. Addition reaction of LiCab(S) (Cab(S) = SC2(H)B10H10) to the rhodium complex 5 yields [Rh(Cp*)(Cab(S))(Cab(N,S))] (6). All the complexes were characterized by IR and NMR spectroscopy, and by elemental analysis. In addition, X-ray structure analyses were performed on complexes 2, 3, 5, and 6, in which the potential C,N- and N,S-chelate ligands were found to coordinate in a bidentate mode. The carborane complex 2 shows catalytic activities up to 3.7x10(5) g PE mol(-1) Ir h(-1) for the polymerization of ethylene in the presence of methylaluminoxane (MAO) as cocatalyst. The polymer obtained from this homogeneous catalytic reaction has a spherical morphology. Catalytic activities and the molecular weight of polyethylene have been investigated for various reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号