首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The rate constants for proton transfer from H3+ ions to N2, O2, and CO have been measured as function of hydrogen buffer gas partial pressure. The rate constant for proton transfer from H3+ to N2 shows a very large pressure dependence, increasing from 1.0 × 10?9 cm3/s at low H2 partial pressures to 1.7 × 10?9 cm3/s at high H2 partial pressures. The rate constants for proton transfer from H3+ to O2 and CO are constant with partial pressure of H2; giving values of 6.4 × 10?10 cm3/s and 1.7 × 10?9 cm3/s, respectively. The roles of excess vibrational energy in H3+ ions and of equilibrium between forward and back reaction are discussed. Back reaction is observed only for the reaction of H3+ ions with O2, and an equilibrium constant of K = 2.0 ± 0.4 at 298 K has been determined. From these data the proton affinity of O2 is deduced to be 0.47 ± 0.11 kcal/mole higher than that of H2.  相似文献   

2.
The overall rate constants for collisional relaxation of metastable excited states of Fe+ by He, Ar, Kr, H2, 2H2, CO, N2, NO, CH4, and CH3OH have been studied by using charge-exchange ion-molecule reaction chemistry. The rate constants vary according to the nature of the quenching reagent as well as the energy level and electron configuration of the Fe+ ions. In general, NO, CH4, and CH3OH are the most efficient quenching reagents with rate constants that approach the Langevin collision rate, whereas the reaction rates for the rare gas atoms are slow and vary depending upon the specific electron configuration of the Fe+ ion. The mechanism of collisional relaxation is discussed with emphasis on a curve-crossing. mechanism for the rare gas atoms. An electron-transfer mechanism is described for the relaxation of high lying (Fe+)*.  相似文献   

3.
Product distributions and rate constants for the reaction of ground state C+ ions with O2, NO, HCl, CO2, H2S, H2O, HCN, NH3, CH4, H2CO, CH3OH, and CH3NH2 have been measured. Rate constants were obtained using ion cyclotron resonance trapped ion methods at JPL, and product distributions were obtained using a tandem (Dempster-ICR) mass spectrometer at the University of Utah. Rapid carbon isotope exchange has also been observed in C+-CO collisions.  相似文献   

4.
Rate constants and activation parameters for the isotopic exchange reactions between (PhO)2PSCl and M36Cl (M = Me4N+, Et4N+, n-Bu4N+, Et3HN+, EtH3N+, Li+) in acetonitrile were measured in order to find the effect of the cation nature onthe kinetics of the reaction. The rate constants measured for a range of concentrations of Et3HN36Cl, EtH3N36Cl, and Li36Cl were analyzed using the Acree equation. The equivalent conductance of LiCl in acetonitrile was determined. The nature of the cation has no effect on the mechanism of the reaction. The cation changes only the experimental rate constant proportionally to the dissociation degree of the salt. Smaller values of the rate constant and smaller activation parameters ΔH? and ΔS? for the reaction with Li36Cl indicate the existenceof the intermolecular interaction between lithium ions and O,O-diphenylphosphorochloridothionate.  相似文献   

5.
《Chemical physics letters》1985,117(2):127-131
The kinetic energy released in near-thermal charge-transfer reactions of Ar+ and N2+ with NO, O2, CO, H2O, N2O, CO2 and NH3 has been measured. The partitioning between kinetic and internal modes is found to be very similar for most of the Ar+/N2+ pairs. Two hypotheses to explain this similarity are proposed and discussed.  相似文献   

6.
Results are presented for two experiments on N2O2+ cluster ions formed via the reactions O2+ + N2 + M → (N2) (O2+) + M (i), and NO+ + NO + M → (NO)2+ + M (ii). In the first experiment the N2O2+ clusters are collisionally dissociated. The resulting collision-induced dissociation (CID) spectra show almost exclusively O2+ and N2+ products from N2 O2+ formed via the first reaction, and almost exclusively NO+ products from N2O2+ formed via the second reaction. In the second experiment, single-photon photodissociation of N2O2+ ions produced by both reactions (i) and (ii) was investigate using 514.5 and 634 nm radiation. The results indicate that the N2O2+ cluster from reaction (i) cannot be photodissociated while the N2O2+ cluster from reaction (ii) undergoes photodissociation at both wavelengths. These experiments indicate that two distinct N2O2+ cluster ions exist and that reactions (i) and (ii) selectively produce the two ions.  相似文献   

7.
Guided ion beam mass spectrometry is used to measure the cross sections as a function of kinetic energy for reaction of SiH4 with O+(4S), O 2 + (2Πg,v=0), N+(3P), and N 2 + (2Σ g + ,v=0). All four ions react with silane by dissociative charge-transfer to form SiH m + (m=0?3), and all but N 2 + also form SiXH m + products where (m=0?3) andX=O, O2 or N. The overall reactivity of the O+, O 2 + , and N+ systems show little dependence on kinetic energy, but for the case of N 2 + , the reaction probability and product distribution relies heavily on the kinetic energy of the system. The present results are compared with those previously reported for reactions of the rare gas ions with silane [13] and are discussed in terms of vertical ionization from the 1t 2 and 3a 1 bands of SiH4. Thermal reaction rates are also provided and dicussed.  相似文献   

8.
The kinetics of gas phase reactions of the ion C5H5Fe+ with oxygen (Me2CO, Me2O, MeOH, iso-propanol, H2O) and nitrogen (NH3, NH2Me, NHMe2, NMe3) donor ligands have been studied by ion trap mass spectrometry. While in the literature reactions of the ion Fe+, with the same ligands, the principal reaction path involves fragmentation in almost all the reactions of the ion C5H5Fe+, formation of adduct ions is the major reaction path. The reactivity of these two ions is briefly compared in the ion trap conditions. Kinetic data for the ion C5H5Fe+ indicate that the reactions show a large range of efficiency and a linear correlation is found between the log of the reaction rate constants and the ionization energy of ligands with the same donor atom.  相似文献   

9.
The reactions of labeled N15NO+ with CO, NO, O2, 18O2, N2, NO2, and N2O have been investigated using a tandem ICR instrument. In each case the total rate coefficient, product distribution, and kinetic energy dependence were measured. The results indicate that very specific reaction mechanisms govern these reactions. This conclusion is suggested by the lack of isotopic scrambling in many cases and by the complete absence of energetically allowed products in almost all of the systems. The kinetic energy studies indicate that most of the reaction channels proceed through an intermediate complex at low energies and via a direct mechanism at higher kinetic energies. Such direct mechanisms include long range charge transfer and atom or ion transfer.  相似文献   

10.
Redox-inactive metal ions are one of the most important co-factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron-transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox-inactive metal ions, [(TMC)FeIII(O2)]+-Mn+ (Mn+=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox-inactive metal ions (ΔE), which is determined from the gzz values of EPR spectra of O2.−-Mn+ complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+-Mn+ complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox-inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+-Mn+ complexes in electron-transfer, electrophilic, and nucleophilic reactions.  相似文献   

11.
Time-of-flight techniques have been used to measure fast neutral CO2 products from double electron transfer reactions of CO22+ ions with 4.0–7.0 keV impact energies. Double electron transfer cross sections have been determined to be in the range of (1.1–12.5) × 10?16 cm2 for reactions of CO22+ ions with CO2, CO, N2, Ar and O2.  相似文献   

12.
Radiolytically formed O2H+, N2H+, and CO2H+ ions were allowed to react with gaseous p-cymene. Dealkylation and isomerization reactions were observed with O2H+ and N2H+ ions, while only the first process occurred when CO2H+ ions were employed. The results show that dealkylation is favored with respect to isomerization as the protonation exothermicity decreases.  相似文献   

13.
The rate coefficients k for the ternary association reactions of CH3+ and CD3+ with H2, N2, O2 CO and CO2 N2+ with N2, and C+ with H2 and D2 have been measured within the temperature range 80–520 K in helium buffer gas. In every case, kAT?n and the magnitudes of k are greater when the deuterated species are involved.  相似文献   

14.
The gas-phase reaction of the NO3 radical with NO2 was investigated, using a flash photolysis-visible absorption technique, over the total pressure range 25–400 Torr of nitrogen or oxygen diluent at 298 ± 2 K. The absolute rate constants determined (in units of 10?13 cm3 molecule?1 s?1) at 25, 100, and 400 Torr total pressure were, respectively, (4.0 ± 0.5), (7.0 ± 0.7), and (10 ± 2) for M = N2 and (4.5 ± 0.5), (8.0 ± 0.4), and (8.8 ± 2.0) for M = O2. These data show that the third-body efficiencies of N2 and O2 are identical, within the error limits, and that previous evaluations for M = N2 are applicable to the atmosphere. In addition, upper limits were determined for the rate constants of the reactions of the NO3 radical with methanol, ethanol, and propan-2-ol of ?6 × 10?16, ?9 × 10?16, and ?2.3 × 10?15 cm3 molecule?1 s?1, respectively, at 298 ± 2 K.  相似文献   

15.
The reactons of (CO2)2+ and (CO)2+ with various additives have been investigated using the NBS high-pressure photoionization mass spectrometer at total pressures of 0.4–1.0 torr of either CO2 or CO. The additives include CH4, CD4, C2H2, O2, H2O, 15,14N2O, and CO in both CO2 and 13CO2. Second- and third-order rate coefficients based on an ambipolar diffusion model are reported for 25 separate reaction pairs at 295°K, as well as sequential cationic reaction mechanisms. An approximate value of 225 ± 3 kcal/mol (941 ± 13 kJ/mol) was derived for ΔHf (CO)2+ based on the kinetics observed in various CO-additive mixtures. Some projections regarding the utility of the data under other conditions are also included.  相似文献   

16.
We have carried out a selected ion flow tube (SIFT) study of the reactions of H3O+, NO+, and O2+ ions with several saturated and unsaturated aldehydes. This study is mainly directed toward providing the essential data for a projected SIFT mass spectrometry (SIFTMS) study of the volatile emissions from cooked meats, which always include aldehydes. Thus, it is necessary to know the rate coefficients and the product ions of the reactions of the above-mentioned ions, used as the precursor ions for SIFTMS analyses, with the aldehydes, if proper identification and quantification of the emitted species are to be achieved. The results of this study show that the reactions of H3O+ with the aldehydes, M, result in the protonated molecules MH+ and for the saturated aldehydes also in (M - OH)+ ions resulting from the loss of a H2O molecule from the nascent MH+ ion. The NO+ reactions invariably proceed via the process of hydride ion, H, transfer producing (M - H)+ ions, but parallel minor association product ions NO+ · M are observed for some of the unsaturated aldehyde reactions. The O2+ reactions proceed by way of charge transfer producing nascent M+ ions that partially dissociate producing fragment ions. Because water vapour is invariably present in real samples analysed by SIFTMS, the current experiments were also carried out following the introduction of humid laboratory air into the helium carrier gas of the SIFT. Thus, the reactions of the product ions that form hydrates were also studied as a prelude to future SIFTMS studies of the (humid) emissions from cooked meats.  相似文献   

17.
This paper describes how weakly bound adduct ions form when the precursor ions used in selected ion flow mass spectrometry, SIFT-MS, analyses, viz. H3O+, NO+ and O2+, associate with the major components of air and exhaled breath, N2, O2 and CO2. These adduct ions, which include H3O+N2, H3O+CO2, NO+CO2, O2+O2 and O2+CO2, are clearly seen when dry air containing 5% CO2 (typical of that in exhaled breath) is analysed using SIFT-MS. These adduct ions must not be misinterpreted as characteristic product ions of trace gases; if so, serious analytical errors can result. However, when exhaled breath is analysed these adduct ions are partly removed by ligand switching reactions with the abundant water molecules and the problems they represent are alleviated. But the small fractions of the adduct ions that remain in the SIFT-MS spectra, and especially when they are isobaric with genuine characteristic product ion of breath trace gases, can result in erroneous quantifications; such is the case for H3O+N2 interfering with breath ethanol analysis and H3O+CO2 with breath acetaldehyde analysis. However, these difficulties can be overcome when the isobaric adduct ions are properly recognised and excluded from the analyses; then these two important compounds can be properly quantified in breath. The presence of O2+CO2 in the product ion spectra interferes with the analysis of CS2 present at low levels in exhaled breath. It is likely that similar problems will occur as other trace compounds are detected in exhaled breath when consideration will have to be given to the possibility of overlapping between their characteristic product ions and ions produced by hitherto unknown reactions. Similar problems are evident in other systems; for example, H3O+CH4 adduct ions are observed in both SIFT-MS analyses of methane rich mixtures like biologically generated waste gases and in model planetary atmospheres.  相似文献   

18.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

19.
Steady-state potentials of various platinum electrodes are measured in cells containing electrolyte ZrO2+ Y2O3(10 mol %) in the temperature range 673–773 K in binary equilibrium gas mixtures N2+ O2and CO + CO2, as well as in four-component nonequilibrium gas mixtures N2+ O2+ CO2+ CO containing 0–3 vol % CO and 0–10 vol % O2. Adding CO to a gas mixture makes the electrode potential deviate from equilibrium, which is explained by chemisorption of CO on the electrode. The oxygen, which is adsorbed on platinum, interacts with CO; as a result, CO2undergoes desorption and the surface concentration of CO drops.  相似文献   

20.
Integral scattering cross sections have been measured for alkali ions (Li+, Na+ and K+) in the energy range 500–4000 eV scattered by room temperature N2 and CO molecules through effective laboratory angles greater than 5 × 10?3 rad. The repulsive potentials deduced from the cross sections are represented bya practically identical formula for the Na+N2 and Na+CO systems, and for the K+CO systems, respectively, while the repulsive potentials of the Li+N2 system are somewhat smaller than those of the Li+CO system at larger intermolecular distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号