首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternated deposition of polyanions and polycations on a charged solid substrate leads to the buildup of polyelectrolyte multilayer (PEM) films. Two types of PEM films were reported in the literature: films whose thickness increases linearly and films whose thickness increases exponentially with the number of deposition steps. However, it was recently found that, for exponentially growing films, the exponential increase of the film thickness takes place only during the initially deposited pairs of layers and is then followed by a linear increase. In this study, we investigate the growth process of hyaluronic acid/poly(L-lysine) (HA/PLL) and poly(L-glutamic acid)/poly(allylamine) (PGA/PAH) films, two films whose growth is initially exponential, when the growth process enters the linear regime. We focus, in particular, on the influence of the molecular weight (Mw) of the polyelectrolytes. For both systems, we find that the film thickness increment per polyanion/polycation deposition step in the linear growth regime is fairly independent of the molecular weights of the polyelectrolytes. We also find that when the (HA/PLL)n films are constructed with low molecular weight PLL, these chains can diffuse into the entire film during each buildup cycle, even for very thick films, whereas the PLL diffusion of high molecular weight chains is restricted to the upper part of the film. Our results lead to refinement of the buildup mechanism model, introduced previously for the exponentially growing films, which is based on the existence of three zones over the entire film thickness. The mechanism no longer needs all the "in" and "out" diffusing polyanions or polycations to be involved in the buildup process to explain the linear growth regime but merely relies on the interaction between the polyelectrolytes with an upper zone of the film. This zone is constituted of polyanion/polycation complexes which are "loosely bound" and rich in the polyelectrolyte deposited during the former deposition step.  相似文献   

2.
The interactions between multivalent ions (small ions or polyelectrolytes) and two exponentially growing polyelectrolyte multilayers, namely, (HA-PLL)(n)() and (HA-PAH)(n)() films, are investigated (HA = hyaluronic acid, PLL = poly-l-lysine, PAH = poly(allylamine)). Ferrocyanide and ferricyanide ions are used as small ion probes. The most striking finding is that, even though these two ions differ only by one charge unit, the ferrocyanide ions induce a partial dissolution of both multilayers whereas these films remain stable in the presence of ferricyanide ions. The dissolution process of (HA-PLL)(n)() films is more rapid than that of (HA-PAH)(n)() films, indicating a stronger interaction between HA and PAH compared to HA and PLL. This is confirmed by polyelectrolyte exchange experiments: when an (HA-PLL)(n)() multilayer film is put into contact with a PAH solution, PLL is quantitatively exchanged with the PAH chains and transformed into an HA-PAH film, whereas an (HA-PAH)(n)() multilayer remains stable in the presence of a PLL solution.  相似文献   

3.
The deposition of polyelectrolyte multilayer films (PEMs) appears more and more as a versatile tool to functionalize a broad range of materials with coatings having controlled thicknesses and properties. To increase the control over the properties of such coatings, a good knowledge of their deposition mechanism is required. Since Cohen Stuart et al. (Langmuir 18 (2002) 5607-5612) showed that the adsorption of one polyelectrolyte could induce desorption of polyelectrolyte complexes instead of regular deposition, more and more findings highlight peculiarities in the deposition of such films. Herein we demonstrate that the association of sodium polyphosphate (PSP) as the polyanion and either poly(-L-lysine hydrobromide) (PLL) or poly(allylamine chloride) (PAH) as the polycations may lead to non-monotonous film deposition as a function of time. Complementary, films containing PSP and PLL can be obtained from a (PLL-HA)(n) template films after the exchange of HA (hyaluronic acid) from the sacrificial template by PSP from the solution. This exchange is accompanied by pronounced film erosion. However, when starting from a (PAH-HA)(n) template, the film erosion and exchange due to the contact with PSP is by far less pronounced, nevertheless the film morphology changes. These findings show that the nature of the polycation used to deposit the PEM film may have a profound influence of the film's response to a competing polyanion.  相似文献   

4.
An efficient method for characterizing wetting properties of heterogeneous surfaces produced by sequential adsorption of polyelectrolytes was developed. Three types of polyelectrolytes were used: polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), both of a cationic type, and polysodium 4-styrenesulfonate (PSS), of an anionic type. Multilayer films were prepared by 'layer-by-layer' (LbL) deposition technique. Natural ruby mica, glass, titanium foil and silicon wafers were used as the support material for PE films. Wetting of polyelectrolyte films was determined experimentally by contact angle measurements, using technique of direct image analysis of shape of sessile drops. Periodic oscillations in contact angle values were observed for multilayers terminated by polycation and polyanion, respectively, and the variations in contact angle values strongly depended on the conditions of adsorption and multilayer treatment after deposition. Therefore, the influence of ionic strength of polyelectrolyte solution used for deposition on wetting of multilayer films was considered and also the effect of conditioning in different environments was investigated. It is usually assumed that film properties and stability strongly depend on the first layer which is used to anchor a multilayer at the surface of support material. To investigate influence of the first layer, PAH/PSS films were compared with more complex ones having PEI as the first layer with a sequence of PSS/PAH deposited on top of it.  相似文献   

5.
Although never emphasized and increasingly used in organic electronics, PEDOT-PSS (poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)) layer-by-layer (lbl) film construction violates the alternation of polyanion and polycation rule stated as a prerequisit for a step-by-step film buildup. To demonstrate that this alternation is not always necessary, we studied the step-by-step construction of films using a single solution containing polycation/polyanion complexes. We investigated four different systems: PEDOT-PSS, bPEI-PSS (branched poly(ethylene imine)-poly(sodium 4-styrene sulfonate)), PDADMA-PSS (poly(diallyl dimethyl ammonium)-PSS), and PAH-PSS (poly(allylamine hydrochloride)-PSS). The film buildup obtained by spin-coating or dipping-and-drying process was monitored by ellipsometry, UV-vis-NIR spectrophotometry, and quartz-crystal microbalance. The surface morphology of the films was characterized by atomic force microscopy in tapping mode. After an initial transient regime, the different films have a linear buildup with the number of deposition steps. It appears that, when the particles composed of polyanion-polycation complex and complex aggregates in solution are more or less liquid (case of PEDOT-PSS and bPEI-PSS), our method leads to smooth films (roughness on the order of 1-2 nm). On the other hand, when these complexes are more or less solid particles (case of PDADMA-PSS and PAH-PSS), the resulting films are much rougher (typically 10 nm). Polycation/polyanion molar ratios in monomer unit of the liquid, rinsing, and drying steps are key parameters governing the film buildup process with an optimal polycation/polyanion molar ratio leading to the fastest film growth. This new and general lbl method, designated as 2-in-1 method, allows obtaining regular and controlled film buildup with a single liquid containing polyelectrolyte complexes and opens a new route for surface functionalization with polyelectrolytes.  相似文献   

6.
We report the influence of polyelectrolyte (PE) multilayer films prepared from poly(styrene sulfonate)-poly(acrylic acid) (PSS-PAA) blends, deposited in alternation with poly(allylamine hydrochloride) (PAH), on film wettability and the adsorption behavior of the protein immunoglobulin G (IgG). Variations in the chemical composition of the PAH/(PSS-PAA) multilayer films, controlled by the PSS/PAA blend ratio in the dipping solutions, were used to systematically control film thickness, surface morphology, surface wettability, and IgG adsorption. Spectroscopic ellipsometry measurements indicate that increasing the PSS content in the blend solutions results in a systematic decrease in film thickness. Increasing the PSS content in the blend solutions also leads to a reduction in film surface roughness (as measured by atomic force microscopy), with a corresponding increase in surface hydrophobicity. Advancing contact angles (theta) range from 7 degrees for PAH/PAA films through to 53 degrees for PAH/PSS films. X-ray photoelectron spectroscopy measurements indicate that the increase in film hydrophobicity is due to an increase in PSS concentration at the film surface. In addition, the influence of added electrolyte in the PE solutions was investigated. Adsorption from PE solutions containing added salt favors PSS adsorption and results in more hydrophobic films. The amount of IgG adsorbed on the multilayer films systematically increased on films assembled from blends with increasing PSS content, suggesting strong interactions between PSS in the multilayer films and IgG. Hence, multilayer films prepared from blended PE solutions can be used to tune film thickness and composition, as well as wetting and protein adsorption characteristics.  相似文献   

7.
The effect of temperature on the buildup of polyelectrolyte multilayers consisting of poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium) (PDADMA), and poly(allylamine) (PAH) was studied by using a quartz crystal microbalance. The increase of temperature in the deposition process was shown to have a considerable effect on the rate of the layer-by-layer buildup. The effect of temperature on the PDADMA/PSS deposition was found to be stronger than on the PAH/PSS deposition. The increasing temperature was found to extend the exponential buildup regime in all of the studied systems. A buildup model was created to simulate the buildup and to explain the effect of temperature. The model is based on the assumption that each deposition step leads to a quasi-equilibrium between the concentration of the polymer repeating unit in solution and the composition of the layer. According to the model, the layer-by-layer buildup is inherently exponential, becoming linear whenever diffusion is not fast enough to carry the polymer within the entire thickness of the film. This buildup model is discussed jointly with the earlier published three-zone model of the polyelectrolyte multilayers. The rate of the buildup is characterized by growth exponent beta. The temperature dependence of the growth exponent is discussed in connection with the thermodynamic parameters of the deposition.  相似文献   

8.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   

9.
Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak "protein-like" polyelectrolytes (i.e., polypeptides), poly(L-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0-10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pKa values. The adsorption of HSA onto (PLL/PGA)n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the alpha-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.  相似文献   

10.
We report the unique layer-by-layer (LbL) assembly behavior of pH-sensitive star-shaped polyelectrolytes with both linear and exponential growth modes controlled by star architecture and assembly conditions. Cationic poly[2-(dimethylamino)ethyl methacrylate] and anionic poly(acrylic acid) stars were synthesized via "core-first" atom-transfer radical polymerization (ATRP) based on multifunctional initiators, in addition to their linear analogues. We demonstrated the LbL growth behavior as a function of deposition pH (ranging from 5 to 7), number of layers (up to 30 bilayers), and the method of assembly (dip- vs spin-assisted LbL). The spin-assisted LbL assembly makes it possible to render smoother and thinner LbL films with parameters controlled by the shear rate and pH conditions. In contrast, for dip-assisted LbL assembly, the pH-dependent exponential growth was observed for both linear and star polyelectrolytes. In the case of linear/linear pair, the exponential buildup was accompanied with a notable surface segregation which resulted in dramatic surface nonuniformity, "wormlike" heterogeneous morphology, and dramatic surface roughening. In contrast, star/linear and star/star LbL films showed very uniform and smooth surface morphology (roughness below 2.0 nm on the scale of 10 μm × 10 μm) with much larger thickness reaching up to 1.0 μm for 30 bilayers and rich optical interference effects. Star polyelectrolytes with partially screened charges and high mobility caused by compact branched architecture appear to facilitate fast diffusion and exponential buildup of LbL films. We suggest that the fast buildup prevents long-range lateral diffusion of polyelectrolyte star components, hinders large-scale microphase separation, and thus leads to unique thick, smooth, uniform, transparent, and colorful LbL films from star polyelectrolytes in contrast to mostly heterogeneous films from traditional linear counterparts.  相似文献   

11.
Formamide, in its pure state, has been used as a working solvent for layer-by-layer (LbL) polyelectrolyte self-assembly. Polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) polyelectrolyte films were deposited onto planar substrates and colloidal particles. Film deposition was confirmed using quartz crystal microbalance and zeta potential measurements. Formamide was used as an alternative to the water-based working solvents commonly used for LbL self-assembly. Few LbL self-assembly studies using nonaqueous solvents have been reported. Most studies performed with nonaqueous solvents have required the addition of small volumes of water to dissolve the polyelectrolytes. Conversely, the high dielectric constant of pure formamide led to the dissolution and transport of PSS and PAH. Using formamide, it is possible to deposit nanometer thick polyelectrolyte films onto water-sensitive surfaces. Formamide can be thus be used for encapsulating water sensitive hydrogen storage materials within polyelectrolyte films.  相似文献   

12.
The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.  相似文献   

13.
Associative phase separation (complex coacervation) in a mixture of oppositely charged polyelectrolytes can lead to different types of (inter-)polyelectrolyte complexes (soluble micelles, macroscopic precipitation). In a previous report [Langmuir 2004, 20, 2785-2791], we presented a model for the electrostatic free energy change when (weakly charged) polyelectrolyte forms a homogeneous complex phase. The influence of ionization of the polymer on the electrostatic free energy of the complex was incorporated but the influence of complex density neglected. In the present effort, cylindrical cells are assumed around each polyelectrolyte chain in the complex, and on the basis of the Poisson-Boltzmann equation, the electrostatic free energy is calculated as a function of the complex density. After combination with Flory-Huggins mixing free energy terms and minimization of the total free energy, the equilibrium complex density is obtained, for a given ratio of polycations to polyanions in the complex. The analysis is used in an example calculation ofpolyelectrolyte film formation by alternatingly applying a polycation and a polyanion solution. The calculation suggests that the often observed exponential growth of a polyelectrolyte film when the polymer is weakly charged has a thermodynamic origin: the polyelectrolyte complex shifts repeatedly between two equilibrium states of different densities and compositions. However, when the polyelectrolytes are strongly charged the difference in the compositions between the two equilibrium states is very small, and exponential growth by an absorption mechanism is no longer possible.  相似文献   

14.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

15.
The potential for using polyelectrolyte multilayers (PEMs) to provide chromatographic functionality on continuous silica networks created from sol-gel chemistry has been evaluated by capillary electrochromatography (CEC). Construction of the PEM was achieved by flushing the column with polyelectrolytes of alternative charge, with variation of the properties of the exposed polyelectrolyte providing a unique means to vary the chromatographic surface. Variation of the exposed polyelectrolyte from poly(diallyldimethylammonium chloride) (PDDAC) to dextran sulfate (DS) allowed the direction of the electroosmotic flow (EOF) to be changed and also provided a means to vary the chromatographic capacity. Variation of negative polymer from DS to poly(styrene sulfonate) (PSS) significantly altered the EOF and the migration of peptides, with both the reversed-phase and ion-exchange capacities increasing. An alternative method for changing the column capacity was to change the thickness of the PEM, which was evaluated by anion-exchange CEC. A 70-80% increase in retention was observed for all anions without any increase in EOF suggesting significant penetration of the analytes through the PEM and interaction with buried charges within the PEM.  相似文献   

16.
Hyaluronan is a polysaccharide that is increasingly investigated for its role in cellular adhesion and for the preparation of biomimetic matrices for tissue engineering. Hyaluronan gels are prepared for application as space fillers, whereas hyaluronan films are usually obtained by adsorbing or grafting a single hyaluronan layer onto a biomaterial surface. Here, we examine the possibility to employ the layer-by-layer technique to deposit thin films of cationic-modified hyaluronan (HA+) and hyaluronan (HA) of controlled thicknesses. The buildup conditions are investigated, and growth is compared to that of other polyelectrolyte multilayer films containing either HA as the polyanion or HA+ as the polycation. The films could be formed in a low ionic strength medium but are required to be cross-linked prior to contact with a physiological medium. NIH3T3 fibroblasts were perfectly viable on self-assembled hyaluronan films with, however, a preference for hyaluronan ending films. These findings point out the possibility to tune the thickness of thin hyaluronan films at the nanometer scale. Such architectures could be employed for investigating cell/substrate interactions or for functionalizing biomaterial surfaces.  相似文献   

17.
We report the use of a variety of polyelectrolyte multilayers (PEMs) as selective skins in composite membranes for nanofiltration (NF) and diffusion dialysis. Deposition of PEMs occurs through simple alternating adsorption of polycations and polyanions, and separations can be optimized by varying the constituent polyelectrolytes as well as deposition conditions. In general, the use of polycations and polyanions with lower charge densities allows separation of larger analytes. Depending on the polyelectrolytes employed, PEM membranes can remove salt from sugar solutions, separate proteins, or allow size-selective passage of specific sugars. Additionally, because of the minimal thickness of PEMs, NF pure water fluxes through these membranes typically range from 1.5 to 3 m3/(m2 day) at 4.8 bar. Specifically, to separate sugars, we employed poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) films, which allow 42% passage of glucose along with a 98% rejection of raffinose and a pure water flux of 2.4 m3/(m2 day). PSS/PDADMAC membranes are also capable of separating NaCl and sucrose (selectivity of approximately 10), while high-flux chitosan/hyaluronic acid membranes [pure water flux of 5 m3/(m2 day) at 4.8 bar] may prove useful in protein separations.  相似文献   

18.
19.
The alternate deposition of polyanions and polycations leads to the formation of films called polyelectrolyte multilayer films (PEMs). Two types of growth processes are reported in the literature, leading to films that grow either linearly or exponentially with the number of deposition steps. In this article we try to establish a correlation between the nature of the growth process and the heat of complexation between the polyanions and the polycations constituting the PEM film. Isothermal titration microcalorimetry experiments performed on several polyanion/polycation systems seem to indicate that an endothermic complexation process is characteristic of an exponential film growth, whereas a strongly exothermic process corresponds to a linear growth regime. Finally, weakly exothermic processes seem to be associated with weakly exponentially growing films. These results thus show that exponentially growing processes are mainly driven by entropy. This explains why the exponential growth processes are more sensitive to temperature than the linear growing processes. This temperature sensitivity is shown on the poly-L-glutamic acid/poly(allylamine) system which grows either linearly or exponentially depending on the ionic strength of the polyelectrolyte solutions.  相似文献   

20.
The buildup mechanism of polypeptide multilayers prepared by the layer-by-layer deposition of a polyanion (poly(L-glutamic acid) (PGA)) and polycations (poly(L-lysine) (PLL), poly(D-lysine) (PDL), and copoly(DL-lysine)(PDLL)) was reinvestigated by using in situ ATR-IR spectroscopy. A difference spectral technique applied to analyze the spectra indicated that the deposition of both the PGA and PLL (PDL) layers accompanies the formation of secondary structures consisting mainly of the antiparallel pleated sheet (the beta-sheet) structure, and that the formation of the beta-sheet structure cannot always be explained in terms of polyanion/polycation complex formation or charge compensation between the polyanion and polycations, although it has been considered as a major process in the multilayer buildup process. Instead, the present paper proposes the following mechanism. During the deposition of the polyelectrolyte, a small amount of the beta-sheet structures are produced at the interface as a result of charge compensation between a polyelectrolyte and an oppositely charged polyelectrolyte in the multilayer. The beta-sheets act as nuclei from which further propagation of the structure takes place at the solution/multilayer interfaces. The driving force of the buildup process in the new mechanism is a kinetically favorable insolubilization of each polyelectrolyte in solution at the interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号