首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A circular ferrofluid driven microchip for rapid polymerase chain reaction   总被引:4,自引:0,他引:4  
Sun Y  Kwok YC  Nguyen NT 《Lab on a chip》2007,7(8):1012-1017
In the past few years, much attention has been paid to the development of miniaturized polymerase chain reaction (PCR) devices. After a continuous flow (CF) PCR chip was introduced, several CFPCR systems employing various pumping mechanisms were reported. However, the use of pumps increases cost and imposes a high requirement on microchip bonding integrity due to the application of high pressure. Other significant limitations of CFPCR devices include the large footprint of the microchip and the fixed cycle number which is dictated by the channel layout. In this paper, we present a novel circular close-loop ferrofluid driven microchip for rapid PCR. A small ferrofluid plug, containing sub-domain magnetic particles in a liquid carrier, is driven by an external magnet along the circular microchannel, which in turn propels the PCR mixture through three temperature zones. Amplification of a 500 bp lambda DNA fragment has been demonstrated on the polymethyl methacrylate (PMMA) PCR microchip fabricated by CO(2) laser ablation and bonded by a low pressure, high temperature technique. Successful PCR was achieved in less than 4 min. Effects of cycle number and cycle time on PCR products were investigated. Using a magnet as the actuator eliminates the need for expensive pumps and provides advantages of low cost, small power consumption, low requirement on bonding strength and flexible number of PCR cycles. Furthermore, the microchip has a much simpler design and smaller footprint compared to the rectangular serpentine CFPCR devices. To demonstrate its application in forensics, a 16-loci short tandem repeat (STR) sample was successfully amplified using the PCR microchip.  相似文献   

2.
A low-cost, disposable card for rapid polymerase chain reaction (PCR) was developed in this work. Commercially available, adhesive-coated aluminum foils and polypropylene films were laminated with structured polycarbonate films to form microreactors in a card format. Ice valves [1] were employed to seal the reaction chambers during thermal cycling and a Peltier-based thermal cycler was configured for rapid thermal cycling and ice valve actuation. Numerical modeling was conducted to optimize the design of the PCR reactor and investigate the thermal gradient in the reaction chamber in the direction of sample thickness. The PCR reactor was experimentally characterized by using thin foil thermocouples and validated by a successful amplification of 10 copy of E. coli tuf gene in 27 min.  相似文献   

3.
A nanoliter rotary device for polymerase chain reaction   总被引:17,自引:0,他引:17  
Liu J  Enzelberger M  Quake S 《Electrophoresis》2002,23(10):1531-1536
Polymerase chain reaction (PCR) has revolutionized a variety of assays in biotechnology. The ability to implement PCR in disposable and reliable microfluidic chips will facilitate its use in applications such as rapid medical diagnostics, food control testing, and biological weapons detection. We fabricated a microfluidic chip with integrated heaters and plumbing in which various forms of PCR have been successfully demonstrated. The device uses only 12 nL of sample, one of the smallest sample volumes demonstrated to date. Minimizing the sample volume allows low power consumption, reduced reagent costs, and ultimately more rapid thermal cycling.  相似文献   

4.
Here we report a strand-specific fluorescent homogeneous assay format for rapid polymerase chain reaction (PCR). A number of similar assays are commonly used for research applications and are an ideal solution for a closed tube quantitative PCR. These assays use fluorescent resonant energy transfer (FRET) between donor and acceptor fluorescent moieties as the reporting mechanism. However, for different reasons these assays do not report amplification when very rapid cycling times are used. This is because current assays, such as TaqMan®, are limited, in terms of assay speed, by the 5′-3′ exonuclease activity of Taq DNA polymerase. Other assays based on hybridisation require either a complex de-conformational event to occur, or require more than one probe to report amplification. Reducing the complexity of the experiment reduces costs in terms of design, optimisation and manufacture. Here, we describe ResonSense® chemistries that use a simple linear fluorescent-labelled probe and a DNA minor-groove binding dye as either donor or acceptor moieties in a homogeneous assay format on the LightCycler®. This assay format will provide for rapid analysis of samples and so it is particularly well suited to point-of-use testing.  相似文献   

5.
Point‐of‐care detection for pathogen is of critical need for wide epidemic warning and medical diagnosis. In this work, we have designed and developed a fully portable and integrated microchip based real‐time polymerase chain reaction machine for rapid pathogen detection. The instrument consists of three functional components including heating, optical, and electrical modules, which are integrated into a portable compact box. The microchip is consumable material replaceable to meet various detection needs. Consequently, we demonstrated the outstanding performance of this portable machine for rapid detection of Salmonella and Escherichia coli O157:H7 with the advantage of time‐saving (~25 min), less samples consumption, portability, and user‐friendly operation.  相似文献   

6.
Light-triggered polymerase chain reaction   总被引:2,自引:0,他引:2  
Photochemical control of the polymerase chain reaction has been achieved through the incorporation of light-triggered nucleotides into DNA.  相似文献   

7.
High-throughput and rapid identification of multiple foodborne bacterial pathogens is vital in global public health and food industry. To fulfill this need, we propose a segmented continuous-flow multiplex polymerase chain reaction (SCF-MPCR) on a spiral-channel microfluidic device. The device consists of a disposable polytetrafluoroethylene (PTFE) capillary microchannel coiled on three isothermal blocks. Within the channel, n segmented flow regimes are sequentially generated, and m-plex PCR is individually performed in each regime when each mixture is driven to pass three temperature zones, thus providing a rapid analysis throughput of m × n. To characterize the performance of the microfluidic device, continuous-flow multiplex PCR in a single segmented flow has been evaluated by investigating the effect of key reaction parameters, including annealing temperatures, flow rates, polymerase concentration and amount of input DNA. With the optimized parameters, the genomic DNAs from Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7 and Staphylococcus aureus could be amplified simultaneously in 19 min, and the limit of detection was low, down to 102 copies μL−1. As proof of principle, the spiral-channel SCF-MPCR was applied to sequentially amplify four different bacterial pathogens from banana, milk, and sausage, displaying a throughput of 4 × 3 with no detectable cross-contamination.  相似文献   

8.
Yue GH  Orban L 《Electrophoresis》2005,26(16):3081-3083
We have developed a very simple and inexpensive method for high-throughput DNA extraction from animal tissues. The procedure contains three steps (digestion, heating, and centrifugation) and it is compatible with the 96-well plate format commonly used in polymerase chain reaction (PCR) amplifications. The duration for processing a plate is about 1.5 h; therefore, one researcher can isolate DNA from up to 1000 samples during a single workday. A small piece of tissue (ca. 10-20 mg) yields enough template for at least 50-70 PCR amplifications, as demonstrated by using the processed samples as templates successfully for long distance PCR, multiplex PCR, and randomly amplified polymorphic DNA (RAPD) assay. The application of our method is expected to facilitate studies that require high-throughput DNA isolation for PCR amplification, such as genotyping by microsatellites for mapping and genetic diversity studies, as well as mutant screening in zebrafish.  相似文献   

9.
Rapid identification of bovine materials in animal foodstuffs is essential for effective control of a potential source of bovine spongiform encephalophathy. A convenient polymerase chain reaction (PCR)-based assay was developed for detection and identification of a bovine-specific genomic DNA sequence in foodstuffs. Simultaneously the assay assessed the DNA quality of the experiment system by amplification of a highly conserved eucaryotic DNA region of the 18-S ribosomal gene, helping to check the reliability of the test result. The amplified bovine-specific PCR product was a genomic DNA fragment of lactoferrin, a low copy gene that was different from a commonly used bovine-specific mitochondria sequence for identification of bovine materials. The specificity of this method was confirmed by the absence of detectable homologous PCR product using reference foodstuff samples that lacked bovine-derived meat and bonemeals, or genomic DNA samples from vertebrates whose offals are commonly included in animal feeds. This method could detect the presence of bovine material in foodstuffs when the samples contained > 0.02% bovine-derived meat and bone meal. Furthermore, it was not affected by prolonged heat treatment. The specificity, convenience, and sensitivity of this method suggest that it can be used for the routine detection of bovine-derived materials.  相似文献   

10.
We have developed a fast single-strand conformation polymorphism (SSCP) technique to screen for mutations and polymorphisms in exons 5-8 of the human tumor suppressor gene p53. We use multiplex polymerase chain reaction (PCR) to amplify the four exons in one single PCR reaction and then fluorescent SSCP for screening. p53 fragments are labeled with three different colors and a fourth color is used for an internal size marker calibrating the gel. The method was evaluated in two ways: (i) 16 different cell lines with known mutations were tested blindly for band-shifts with SSCP, and (ii) 32 human urinary bladder cancer samples were screened for mutations using the present technique. After screening for mutations all exons from all samples were sequenced, both sense as well as antisense strands. Evaluating the method with four different gels shows that 21/23 mutations and polymorphism were detected in the cell lines and that 10/10 mutations and polymorphisms were detected in the patient samples. Sensitivity, specificity, positive and negative predictive values were 91/100%, 88/ 97%. 78/77% and 96/100% for cell lines / patient samples, respectively. Sensitivity, using one SSCP gel only, was 87% (20/23) for cell lines and 90% (9/10) for patient samples. We conclude that our modified SSCP technique is efficient and has a sensitivity close to 100% in detecting mutations.  相似文献   

11.
In this work, we report the first electrochemistry-based real-time polymerase chain reaction technique for sequence-specific nucleic acid detection. This new technique builds upon the advantages of the well-established fluorescence-based counterpart, such as short assay time (simultaneous target DNA amplification and detection). In addition, this electrochemical approach could employ simple and miniaturizable instrumentation compared to the bulky and expensive optics required in the fluorescence-based schemes. We have demonstrated a proof-of-concept experiment showing that the utilization of solid-phase extension of the electrode surface-immobilized capture probe with Fc-dUTP during PCR resulted in the accumulation of the redox marker on the transducer surface. This new technique can be applied to a microfabricated PCR electrochemical device for point-of-care diagnostics as well as on-site environmental monitoring and biowarfare agent detection.  相似文献   

12.
An improved electrochemiluminescence polymerase chain reaction (ECL-PCR) method was developed and applied to detect Fusarium wilt. Briefly, the internal transcribed spacer (ITS) sequence of Fusarium oxysporumf, sp Cubense (FOC) was amplified by PCR. Two universal fragments, which were complimentary to Ru(bpy)3^2+ (TBR) labeled probe and Biotin labeled probe, respectively, were connected to the tail of primers so that all the PCR products got universal sequences. Then biotin labeled probes and TBR labeled probes were hybridized with the PCR products at the same time. Through the specific interaction between biotin and streptavidin, the PCR products were captured by streptavidin coated magnetic bead and then detected by ECL assay. The experiment results showed that the healthy banana samples and infected ones can be discriminated by this ECL-PCR method. This improved ECL-PCR approach is useful in Fusarium wilt detection due to its high sensitivity, simplicity and stability.  相似文献   

13.
14.
A new system was developed for sensitive and selective detection of tumor cells taking advantage of cell-attached aptamers amplified by PCR and output signals amplified by cationic conjugated polymers.  相似文献   

15.
A novel extrusion driving protocol was developed based on micro-fabricated polydimethylsiloxane (PDMS) pneumatic valves. High efficiency liquid transfer was performed by using entirely overlapping control channels and fluid channels. A 0.5-s time is sufficient for the transfer of 9 μL sample solution between two chambers in the microchip with a nitrogen pressure of 70 kPa. The driving method was used in a microfluidic polymerase chain reaction (PCR) system, and rapid cycling of the PCR mixture in a closed loop was achieved. The amplification of DNA was demonstrated via both three-stage and two-stage PCR thermal cycling on the microchips resulting in significant reduction of the PCR time. The amplifications of 144-bp and 200-bp DNA fragments were achieved within 24 min using a three-stage protocol with 30 thermal cycles, and 130-bp DNA fragments within 12 min by using 20 thermal cycles in the two-stage system, compared to about 2 h in benchtop PCR with the same number of thermal cycles.  相似文献   

16.
Recently, we have reported an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection of genetically modified organisms. The ECL-PCR method was further improved in the current study by introducing a multi-purpose nucleic acid sequence that was specific to the tris(bipyridine) ruthenium (TBR) labeled probe, into the 5′ terminal of the primers. The method was applied to detect plant viruses. Conserved sequence of the plant viruses was amplified by PCR. The product was hybridized with a biotin labeled probe and a TBR labeled probe. The hybridization product was separated by streptavidin-coated magnetic beads, and detected by measuring the ECL signals of the TBR labeled. Under the optimized conditions, the experiment results show that the detection limit is 50 fmol of PCR products, and the signal-to-noise ratio is in excess of 14.6. The method was used to detect banana streak virus, banana bunchy top virus, and papaya leaf curl virus. The experiment results show that this method could reliably identity viruses infected plant samples. The improved ECL-PCR approach has higher sensitivity and lower cost than previous approach. It can effectively detect the plant viruses with simplicity, stability, and high sensitivity.  相似文献   

17.
A simple and rapid method for identification of alleles at the human leucocyte antigen (HLA)-DQA1 locus is described. The polymorphic second exon of the HLA-DQA1 locus was amplified by the polymerase chain reaction (PCR) method. The amplified DNA was analyzed by single-strand conformation polymorphism (SSCP) and restriction enzyme cleavage assay. Using this method, the eight known DQA1 alleles could be distinguished from each other. This paper suggests that the method can be used for quick genotyping of DQA1 alleles, but detecting point mutations at various positions in a fragment as well as new HLA-DQA1 genotypes should also be possible.  相似文献   

18.
19.
To interpret simulations of a complex system to determine the physical mechanism of a dynamical process, it is necessary to identify the small number of coordinates that distinguish the stable states from the transition states. We develop an automatic method for identifying these degrees of freedom from a database of candidate physical variables. In the method neural networks are used to determine the functional dependence of the probability of committing to a stable state (committor) on a set of coordinates, and a genetic algorithm selects the combination of inputs that yields the best fit. The method enables us to obtain the first set of coordinates that is demonstrably sufficient to specify the transition state of the C(7eq)--> alpha(R) isomerization of the alanine dipeptide in the presence of explicit water molecules. It is revealed that the solute-solvent coupling can be described by a solvent-derived electrostatic torque around one of the main-chain bonds, and the collective, long-ranged nature of this interaction accounts for previous failures to characterize this reaction.  相似文献   

20.
We describe the application of allele-specific PCR (AS-PCR) for screening biallelic markers, including SNPs, within the nonrecombining region of the human Y-chromosome (NRY). The AS-PCR method is based on the concept that the perfectly annealed primer-template complex is more stable, and therefore, more efficiently amplified under the appropriate annealing temperature than the complex with a mismatched 3'-residue. Furthermore, a mismatched nucleotide at the primer's 3'-OH end provides for a poor extension substrate for Taq DNA polymerase, allowing for discrimination between the two alleles. This method has the dual advantage of amplification and detection of alleles in a single expeditious and inexpensive procedure. The amplification conditions of over 50 binary markers, mostly SNPs, that define the major Y-haplogroups as well as their derived lineages were optimized and are provided for the first time. In addition, artificial restriction sites were designed for those markers that are not selectively amplified by AS-PCR. Our results are consistent with allele designations derived from other techniques such as RFLP and direct sequencing of PCR products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号