首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spin orientation dynamics in a GaAs quantum well with a laterally nonuniform electric potential generated by a mosaic electrode deposited on the surface of the sample has been investigated using the photoinduced magneto-optical Kerr effect. It has been found that the application of a negative potential higher than 1 V to the electrode leads to more than a hundredfold increase in the spin polarization lifetime in the sample under study. It is concluded that so strong slowing down of the relaxation is caused by a combined action of two effects, namely, the spatial separation of electron and hole, which reduces the radiative recombination rate of electron-hole pair, and the localization of electron, which is accompanied by the suppression of spin relaxation processes caused by electron motion.  相似文献   

2.
3.
The studies of spin phenomena in semiconductor low-dimensional systems have grown into the rapidly developing area of the condensed matter physics: spintronics. The most urgent problems in this area, both fundamental and applied, are the creation of charge carrier spin polarization and its detection, as well as electron spin control by nonmagnetic methods. Here, we present a review of recent achievements in the studies of spin dynamics of electrons, holes, and their complexes in the pump-probe method. The microscopic mechanisms of spin orientation of charge carriers and their complexes by short circularly polarized optical pulses and the formation processes of the spin signals of Faraday and Kerr rotation of the probe pulse polarization plane as well as induced ellipticity are discussed. A special attention is paid to the comparison of theoretical concepts with experimental data obtained on the n-type quantum well and quantum dot array samples.  相似文献   

4.
We have addressed the dependence of quasi-two-dimensional electron spin dephasing time on the electron gas density in a 17-nm GaAs quantum well using the time-resolved magneto-optical Kerr effect. A superlinear increase in the electron dephasing time with decreasing electron density has been found. The degree of electron spin relaxation anisotropy has been measured and the dependence of spin-orbit splitting on electron gas density has been determined.  相似文献   

5.
A strong anisotropy of electron spin decoherence is observed in GaAs/(AlGa)As quantum wells grown on a (110) oriented substrate. The spin lifetime of spins perpendicular to the growth direction is about one order of magnitude shorter compared to spins along [110]. The spin lifetimes of both spin orientations decrease monotonically above temperatures of 80 and 120 K, respectively. The decrease is very surprising for spins along the [110] direction and cannot be explained by the usual Dyakonov-Perel dephasing mechanism. A novel spin dephasing mechanism is put forward that is based on scattering of electrons between different quantum well subbands.  相似文献   

6.
Specific features in the behavior of localized magnetic polarons formed under optical excitation in heterostructures based on semimagnetic semiconductors are considered. These features are due to the strong anisotropy of the hole g factor in low-dimensional systems based on zincblende crystals. The anisotropy is due to the strong spin-orbit coupling in the valence band which, in quantum confinement conditions, results in quadrupole splitting of the hole spin levels. The g factor anisotropy manifests itself in a strong anisotropy of the magnetic and magneto-optical characteristics of localized magnetic polarons. Fiz. Tverd. Tela (St. Petersburg) 40, 800–802 (May 1998)  相似文献   

7.
Some recent result of muon spin relaxation measurements in rare earth metals and intermetallic compounds are reviewed. Special emphasis is put on measurements that relate to the properties of correlated regions of spins existing relatively far above the ordering temperature in the rare earth ions. As far as comparable data from paramagnetic neutron scattering exist, they will be discussed in the same framework. For each temperature the correlated regions (or short-lived magnetic clusters) are characterized by their size, possible anisotropy with respect to the crystalline axes and their lifetime. The actual form of the interaction between the rare earth spins themselves and with the crystal fields determine the temperature dependence of these properties; a strong dipole interaction can, for instance, be expected to change the critical behaviour nearT c . Much of the time will be devoted to experiments on Gd-metal where there are experimental indications that several interesting phenomena occur: (1) a strong effect of a cross-over from a non-conserved dynamics (dipolar) regime to a conserved (exchange dominated) regime some 10 K aboveT c , (2) an anisotropy of the magnetic clusters with respect to the hexagonalc-axis, and (3), a persistence of spin correlations far aboveT c . Some attempts to correlate the rare earth spin relaxation times measured in this region with cluster lifetimes deduced from neutron scattering will be reviewed, as well as a model for understanding these lifetimes in terms of temperature dependent cluster wall motion, which is determined by exchange and magnetic anisotropy parameters. Effects of possible quantum correlations originating from the “spin system+bath” interaction will be mentioned.  相似文献   

8.
We have study the simultaneous effect of Rashba and Dresselhaus spin–orbit interactions on the polaron properties in wurtzite semiconductor quantum wells. The linear and cubic contributions of the bulk Dresselhaus spin–orbit coupling and the effects of phonon confinement on electron–optical-phonon interaction Hamiltonians are taken into account. We have found analytical solutions for the polaron energies as well as polaron effective mass within the range of validity of perturbation theory. It is shown that the polaron energy and effective mass correction are both significantly enhanced by the spin–orbit coupling. Wave number dependent phonon contribution on the electron energy has minima and varies differently of the spin-up and spin-down states. Polaron self-energy due to interface optical phonon modes has larger values than of the confined optical phonon modes ones. The polaron effective mass exhibits anisotropy and the contribution of the Dresselhaus spin–orbit coupling term on the polaron effective mass is dominated by Rashba one.  相似文献   

9.
We investigate the electron spin–orbit interaction anisotropy of pyramidal InAs quantum dots using a fully three-dimensional Hamiltonian. The dependence of the spin–orbit interaction strength on the orientation of externally applied in-plane magnetic fields is consistent with recent experiments, and it can be explained from the interplay between Rashba and Dresselhaus spin–orbit terms in dots with asymmetric confinement. Based on this, we propose manipulating the dot composition and height as efficient means for controlling the spin–orbit anisotropy.  相似文献   

10.
The dynamics of a high-spin quantum system with magnetic anisotropy of the easy plane type under the action of spin-polarized current permeating this system is considered. The spin-polarized current (with electron spins polarized along the hard magnetic axis of the system) induces the reorientation of the magnetic moment of the system from the easy plane to the hard magnetic axis. Analytical expressions describing characteristics of the reorientation process in the limiting cases of strong and weak dissipation are obtained. Under strong dissipation conditions, the reorientation is shown to have a threshold character with “soft” (continuous) displacement of the magnetic moment from the easy plane. Under weak dissipation, the reorientation occurs as a discrete process, that is, is accompanied by magnetic moment jumps and hysteresis as the spin current increases and decreases. At a fairly low temperature and weak damping, quantum effects arise in the system. The spin current induces excitations quasi-anionic in character, Bloch oscillations of magnetic moment precession, and tunneling between different precession quantum modes. These quantum effects, in particular, manifest themselves in the system under consideration by magnetic moment jumps and magnetic susceptibility peaks.  相似文献   

11.
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin–orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.  相似文献   

12.
The temperature dependences of the magnetizations of sublattices and the spectra of elementary excitations of an anisotropic ferrimagnet have been investigated. It has been shown that, in the anisotropic ferrimagnet, even a weak single-ion anisotropy induces the quantum spin reduction effect and, as a consequence, changes the behavior of the magnetizations of the sublattices. This gives rise to a new branch of magnetic excitations with the purely longitudinal dynamics of the average value of the spin due to the quantum spin reduction effect.  相似文献   

13.
We show that quantum dots and quantum wires are formed underneath metal electrodes deposited on a planar semiconductor heterostructure containing a quantum well. The confinement is due to the self-focusing mechanism of an electron wave packet interacting with the charge induced on the metal surface. Induced quantum wires guide the transfer of electrons along metal paths and induced quantum dots store the electrons in specific locations of the nanostructure. Induced dots and wires can be useful for devices operating on the electron spin. An application for a spin readout device is proposed.  相似文献   

14.
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Crystalline silicon is the most commonly used material in photovoltaics but has limitations due to its high cost and non-tunable band gap. A new approach of using inexpensive, non-toxic materials with layers that have different band gaps which absorb a wide range of the solar spectrum has the potential to dramatically increase the efficiencies and lower the costs. Core–shell Si–SiO2 nanoparticles are ideally suited for the photovoltaic application and have been synthesised by different groups in an array of sizes allowing for absorption in a wide spectral range. A theoretical investigation of fundamental charge transfer processes in these systems can potentially lead to improved devices. Calculations on a model core–shell interface with the formula Si264O160 which features a silicon layer sandwiched between two SiO2 layers were performed using the Vienna ab initio software package. The Perdew–Burke–Ernzerhof functional in the basis of plane waves was used along with pseudopotentials to simulate electronic structure. The nuclear motion was considered using ab initio molecular dynamics. The density of states, absorption spectrum, partial charge densities, and radiative recombination lifetimes have been calculated. This interface shows quantum confinement behaviour similar to a particle in a box. The role of non-radiative recombination was also determined by relaxation dynamics.  相似文献   

16.
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.  相似文献   

17.
A three-electron quantum dot under an external magnetic field was studied. A number of phase diagrams have been obtained to demonstrate how the variation of the magnetic field and/or the parameters of confinement would lead to the occurrence of doublet–quadruplet transitions. Both the confinement with parabolic potential and the square well potential have been considered. We show that the parameters of confinement alter the ground state of the quantum dot from a spin doublet to a spin quadruplet. This result indicates that the quantum dot can be used as a good candidate for qubit of a quantum computer.  相似文献   

18.
The dispersion of magnetoplasma excitations in two-dimensional electron systems in a strong parallel magnetic field has been studied. A considerable increase in the electron cyclotron mass with an increase in the parallel component of magnetic field has been detected. It has been found that the cyclotron mass increment is a quadratic function of the magnetic field parallel to the interface. It has been shown that the mass anisotropy of 2D electrons induced by the parallel magnetic field reaches nearly 2.5 in B = 7 T. The energy of space quantization of the electron in the quantum well has been estimated from the magnetic field dependence of the anisotropy.  相似文献   

19.
We have studied the Zeeman splitting in ballistic hole quantum wires formed in a (311)A quantum well by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is oriented perpendicular to the wire, no spin splitting is discernible up to B = 8.8 T. The observed large Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum confinement for spin splitting in nanostructures with strong spin-orbit coupling.  相似文献   

20.
The nonresonant electromagnetic instabilities of the anisotropic velocity space (Weibel‐like) have always been one of the interesting subjects for researchers. These electromagnetic instabilities play an important role in generating strong magnetic fields in laboratory plasmas for applications such as inertial confinement fusion and space plasmas. In this paper, we investigate the quantum effects of the particle spin on the electromagnetic instabilities. In the case of the presence of a magnetic dipole force and an electron precession frequency like the Vlasov equation, we derive the full quantum equation. This study shows that, in the presence of the spin‐polarized effects, the growth rate of the instabilities is reduced compared to the classical cases and will not arise for low fractions of the temperature anisotropy for different values of the magnetic field. Indeed, it is expected that the probability of electron capture in the background magnetic fields and the effective collision with the particle increase because of the spin effect, so that a high portion of the electron energy is transmitted to the background plasma, and the temperature anisotropy governing the electron distribution is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号