首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Schiff碱型和仲胺型双冠醚的合成和配位性能   总被引:4,自引:0,他引:4  
由水杨醛与α,ω-二溴代烷或二(对-甲苯磺酸)三甘醇酯反应,制成相应的二醛化合物。再与4′-氨基苯并-15-冠-5反应生成5种Schiff碱型双冠醚,经LiAlH_4还原可生成5种仲胺型双冠醚。电导率测量结果表明可与KCl(Rb)盐生成2:1(冠醚单元:金属离子)的夹心型配合物。而与钠离子形成1:1配合物。用双冠醚制成PVC膜钾离子选择电极,并测量了电极的线性范围和选择系数。  相似文献   

2.
Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd(2+) was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd(2+). The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg(-1)) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4±0.6 mV decade(-1) of activity for Cd(2+) ions and a working concentration range of 1.6×10(-6)-1.0×10(-2)M. The sensor has a fast response time of 10s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd(2+) from the oxidation of CdS QDs solution and the real treatment waste water sample with excellent results.  相似文献   

3.
用电导法研究了五种三嗪环双冠醚与碱金属盐的配合物的组成,报导了用这些双冠醚制备的PVC膜钾离子选择性电极的性能。  相似文献   

4.
合成了九种用嘧啶环桥联的新的双冠醚,其中分别含有苯并-12-冠-4、(1、47)、苯并-15-冠-5(2、5、8)和苯并-18-冠-6(3、6、9 )。用它们作为载体分别制成钠、钾和铯离子选择性电极,测定了电极的选择性系数。结果表明,电极(7)(8)(9)具有较好的性能。  相似文献   

5.
A series of polymeric nitrite‐selective electrodes containing a new lipophilic ionophore Co(II) tert‐butyl‐salophen is reported. The stability of Co(II) ionophores within a PVC‐based membrane was investigated by leaching experiments. Different membrane compositions were explored in order to reach the lowest possible limit of detection for a PVC‐based nitrite selective polymeric membrane electrode containing this ionophore. The optimal electrode showed a limit of detection of 2×10?6 M and exhibited four orders of magnitude of discrimination over nitrate, chloride and bromide. The electrodes were evaluated in undiluted human urine and attest to the robustness of the ionophore.  相似文献   

6.
本文报道由5-硝基-6-三氟甲基嘧啶环桥联苯并-12-冠-4、苯并-15-冠-5和苯并-18-冠-6的三种新的双冠醚的合成。用它们作为载体分别制成钠、钾和铯离子选择性电极,测定了电极的响应功能、选择性系数和适用的pH范围。结果表明三种电极都有较好的性能。  相似文献   

7.
用脂链或芳环桥联两个苯并—15—冠—5单元的双冠醚报道较多,而桥联苯并-18-冠-6或苯并-12-冠-4单元的双冠醚报道较少。本文报道以α,ω-二卤代烷或二(对甲苯磺酸)二甘醇酯与邻羟基苯甲醛反应,制成相应的二醛化合物1_(α-∫)后使它们分别与4′-氨基苯并-18-冠-6或4′-氨基苯并-12-冠-4反应,得到脂芳混合桥联的schiff碱型双冠醚2_(b-∫)或3_(?)。  相似文献   

8.
Cross GG  Fyles TM  Suresh VV 《Talanta》1994,41(9):1589-1596
Polymers containing covalently attached 18-crown-6 or 2.2.2 cryptand units were incorporated into plasticized PVC membranes and the composite membranes were examined as potassium ion sensor elements. Ionophores were linked to carboxy-PVC and to poly(acrylic acid) via amide linkages to an alkyl spacer unit. Coated-wire electrodes (CWEs) from the immobilized ionophores gave acceptable responses, but conventional ion-selective membrane electrodes (ISEs) prepared by solvent casting were inactive. Dip-cast membranes did give active ISEs. Potassium electrode performance was independent of the loading of the ionophore within the acrylate support polymer, but depended upon the spacer length. Ion selectivity varied with the ionophore loading within the support polymer. Selectivity is a composite of the ionophore selectivity and ion-exchange interactions with the acrylate backbone, giving selectivities akin to carboxylate substituted crown ethers, notably enhanced monovalent/divalent ion discrimination relative to the ionophore in solution. Polymer immobilization extended the lifetime of active electrodes.  相似文献   

9.
Lithium, potassium and caesium-selective microelectrodes were prepared by coating the tips of preconditioned silver wires, incorporated in a flow-cell, with PVC membranes containing four different ionophores. A dicarboxamide, a 14-crown-4 carboxylic acid, benzo-18-crown-6 and di-(tert-butylbenzo)-21-crown-7 ionophores were used in the electrode matrix. The first two ionophores were used in lithium ion-selective electrodes, the third in a potassium ion electrode and the fourth in a caesium ion electrode. Two different plasticizers, o-nitrophenyl octyl ether (NPOE) and o-nitrophenyl pentyl ether (NPP'E) were used. Enhancement of the signal and the slope of the calibration curve and improvement of the curve linearity were observed in all cases when NPP'E was used as plasticizer. A general trend of enhanced selectivity of the electrodes incorporating crown ether ionophores was also observed when NPP'E was the plasticizer.  相似文献   

10.
Ionophores selectively sensitive to primary amines have been synthesized which display low potentiometric selectivity coefficients for K+, Na+ and NH4+ ions, secondary and tertiary amines as well as quaternary ammonium ions. These ionophores include macrocyclic polyethers with dinaphthyl subunits and azocrown ether with nitrogen donor atoms. The feasibility of these ionophores for preparing primary amine drug selective electrodes was investigated in detail. Practically usable PVC membrane electrodes sensitive to primary amine drugs, such as mexiletine, dopamine, metaraminol and tryptamine, and aliphatic primary amines have been prepared with these ionophores as neutral carriers. Direct potentiometric methods for assaying these drugs have been proposed by using the prepared electrodes. The proposed primary amine drug selective electrodes are remarkably superior to those based on ion-associates. Compared with the electrodes based on common ethers, the interference by K+, Na+ and NH4+ ions is substantially reduced. A digital simulation of the electrochemical process concerning the membrane transport was performed and some interesting conclusions have been drawn.  相似文献   

11.
Ionophores selectively sensitive to primary amines have been synthesized which display low potentiometric selectivity coefficients for K~+, Na~+ and NH_4~+ ions, secondary and tertiary amines as well as quaternary ammonium ions. These ionophores include macrocyclic polyethers with dinaphthyl subunits and azocrown ether with nitrogen donor atoms. The feasibility of these ionophores for preparing primary amine drug selective electrodes was investigated in detail. Practically usable PVC membrane electrodes sensitive to primary amine drugs, such as mexiletine, dopamine, metaraminol and tryptamine, and aliphatic primary amines have been prepared with these ionophores as neutral carriers. Direct potentiometric methods for assaying these drugs have been proposed by using the prepared electrodes. The proposed primary amine drug selective electrodes are remarkably superior to those based on ion-associates. Compared with the electrodes based on common ethers, the interference by K~+, Na~+ and NH_4~+ ions is subst  相似文献   

12.
Five electrode designs based on PVC and silicone-rubber membranes are compared. The responses of conventional electrodes, a coated silver wire and a coated carbon rod, to potassium ion were tested with valinomycin as model ionophore. A laboratory-made PVC electrode was found to be particularly useful for testing new membranes. Five of the six plasticizers studied were found to respond in near-Nernstian fashion to alkali metal ions. Of the six monoaza crown ethers tested as ionophores, only one improved the alkali metal response of the PVC membranes in neutral solution. The reason for this is discussed.  相似文献   

13.
Saleh MB 《Talanta》1998,46(5):885-895
Cesium ion-selective PVC membrane electrodes based on anilino-(1,3-dioxo-2-indanylidene) acetonitrile derivatives as a novel class of neutral ionophores were examined. The ionophores were p-methoxyanilino-(1,3-dioxo-2-indanylidene) acetonitrile, p-methylanilino-(1,3-dioxo-2-indanylidene) acetonitrile and p-N,N-dimethylanilino-(1,3-dioxo-2-indanylidene) acetonitrile. The anilino-(1,3-dioxo-2-indanylidene) acetonitrile proved to work well with cesium, the corresponding electrodes display a response to this ion. The most favourable ionophore was p-methoxyanilino-(1,3-dioxo-2-indanylidene) acetonitrile, especially when the secondary ion exchanger potassium tetrakis (4-chlorophenyl) borate was incorporated in 2-nitrophenyl octyl ether for ion-selective electrode membrane construction. The response function was linear within the concentration range 10(-1)-2.5x10(-5) mol l(-1) and the slope was 52 mV decade(-1). The detection limit remained at 6.3x10(-6) mol(-1). The selectivity and response time of the electrode was studied and it was found that the electrode exhibited good selectivity for cesium over alkali, alkaline earth and some transition metal ions. The electrode response was stable over a wide pH range. The lifetime of the electrode was about 1 month.  相似文献   

14.
用六个含二个苯并-15-冠-5单元的席夫碱型和仲胺型新型双冠醚作载体制备了钾离子选择性PVC膜电极,并研究了它们的电极行为,这些电极对所有的其它碱金属和碱土金属离子展现出显著的钾离子选择性,可期望有一定的应用价值.  相似文献   

15.
《Electroanalysis》2005,17(22):2019-2025
Since conventional response models for ionophore‐based ISEs are based on the assumption of a homogeneous membrane phase, they cannot accurately predict the response of membranes containing self‐aggregating ionophores. However, meaningful conclusions about the relationship between ionophore structure and potentiometric responses can only be drawn if ionophore aggregation is properly recognized. This study demonstrates that dark field visible microscopy and FTIR microspectroscopy are valuable tools for the observation of such ionophore self‐aggregation and, thereby, the development of new ionophore‐based ISEs. Sulfate selective electrodes with solvent polymeric membranes containing bisthiourea ionophores that differ only by peripheral nonpolar substituents were shown to exhibit very different interferences from the sample pH. On one hand, optimized electrodes based on an ionophore with a phenyl substituent on each thiourea group ( 1 ) do not respond to pH at all and function well as sulfate‐selective electrodes. On the other hand, membranes containing a more lipophilic ionophore with two additional hexyl‐substituted adamantyl groups ( 2 ) exhibit severe pH interference at pH values as low as pH 5. The observation of membranes containing ionophore 2 with dark field visible microscopy and FTIR microspectroscopy shows supramolecular aggregation, and explains the startling difference between the potentiometric responses of the two types of electrodes.  相似文献   

16.
Five bis(benzo-15-crown-5) derivatives connected with different bridge chains were synthesized as neutral carriers in K+-selective electrodes. Potassium ion-selective PVC membrane electrodes based on these bis(crown ether)s were prepared using dibutyl phthalate (DBP) and dioctyl phthalate (DOP) as plasticizers of the PVC membrane. The selectivity coefficients (K M n+:K K+) for various alkali and alkaline-earth metal ions were measured. The electrodes based on the bis(crown ether)s are more selective for K+ than those based on monomeric crown ethers. The selectivity of one of the prepared potassium selective electrodes was higher than that of the electrode based on valinomycin and three of them were stable over a wide pH range.  相似文献   

17.
Boronic esters incorporated into a poly(vinyl chloride) (PVC)-supported liquid membrane electrodes have displayed an anionic ionophore properties enabling their use in the potentiometric high-throughput screening procedures. These compounds belong to the class of ligands in which the anion recognition process can be explained on the concept of Lewis type acid-base interactions. Membranes containing boronic esters showed fairly good sensitivity for maleate (cis-isomer) in comparison to fumarate anions (trans-isomer). The potentiometric selectivity coefficients of proposed electrodes proved that common anions did not interfered with the maleate anion determination. The influence of structure of the three boronic esters ionophores on generation of potentiometric signal by developed liquid membrane electrodes was shortly discussed.  相似文献   

18.
《Electroanalysis》2017,29(3):739-747
Most commercially available fluorous polymers are ill suited for the fabrication of ion‐selective electrode (ISE) membranes. Therefore, we synthesized semifluorinated polymers for this purpose. Ionophore‐free ion‐exchanger electrodes made with these polymers show a selectivity range (≈14 orders of magnitude) that is nearly as wide as found previously for liquid fluorous ion‐exchanger electrodes. These polymers were also used to construct ISE membranes doped with fluorophilic silver ionophores. While the resulting ISEs were somewhat less selective than their fluorous counterparts, the semifluorinated polymers offer the advantage that they can be doped both with fluorophilic ionophores and traditional lipophilic ionophores, such as the silver ionophore Cu(II)‐I (o ‐xylylenebis[N,N ‐diisobutyldithiocarbamate]). We also cross‐linked these polymers, producing very durable membranes that retained broad selectivity ranges. K+ ISEs made with the cross‐linked semifluorinated polymer and the ionophore valinomycin showed selectivities similar to those of PVC membrane ISEs but with a superior thermal stability, the majority of the electrodes still giving a theoretical (Nernstian) response after exposure to a boiling aqueous solution for 10 h.  相似文献   

19.
New polymeric membrane cadmium‐ion selective sensors have been prepared by incorporating nitrogen and sulfur containing tridentate ligands as the ionophores into the plasticized PVC membranes. Poly(vinyl chloride) (PVC) based membranes of potassium hydrotris[N‐(2,6‐xylyl)thioimdazolyl) borate] (KTt2,6‐xylyl) and potassium hydrotris(3‐phenyl‐5‐methylpyrazolyl) borate (KTpPh,Me) with sodium tetraphenyl borate (NaTPB) as an anionic excluder and dibutylphthalate (DBP), tributylphthalate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE) as plasticizing solvent mediators were investigated in different compositions. KTt2,6‐xylyl was found to be a selective and sensitive ion carrier for Cd(II) membrane sensor. A membrane composed of KTt2,6‐xylyl:NaTPB:PVC:DBP with the % mole ratio 2.3 : 1.1 : 34.8 : 61.8 (w/w) works well over a very wide concentration range (7.8×10?8–1.0×10?2 M) with a Nernstian slope of 29.4±0.2 mV/decades of activity between pH values of 3.5 to 9.0 with a detection limit of 4.37×10?8 M. The sensor displays very good discrimination toward Cd(II) ions with regard to most common cations. The proposed sensor shows a short response time for whole concentration range (ca. 8 s). The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (Triton X‐100) surfactants were investigated on the potentiometric properties of proposed cadmium‐selective sensor. The proposed sensor based on KTt2,6‐xylyl ionophore has also been used for the direct determination of cadmium ions in different water samples and human urine samples.  相似文献   

20.
Lipophilic compounds combining oxy- and ester-groups are synthesized and studied as neutral ionophores in plasticized PVC membranes for the development of novel water hardness ion-selective electrodes. Electrodes based on the ionophores studied showed a higher selectivity to calcium over magnesium ions. However, for electrodes based on hexadecyl-4-hydroxybutanoate or decyloxybutanol this preference turned to be rather low: logKCaMg=–(0.5–0.7). Electrodes with membranes containing hexadecyl-4- hydroxybutanoate, 0.3 M as a neutral ionophore and bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate, 0.01 M as a charged ionophore, in combination with Ca2+-selective electrode based on ETH 1001 as ionophore, proved to be suitable for measurements of water hardness, also for the measurement of Mg2+ ion content in artificial aquarium fish-breeding water samples and in samples modeling electrolyte composition of blood serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号