首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An actin-binding protein (p33) has been purified from chicken gizzard smooth muscle. The homogenous protein has a molecular weight near 33000 as determined by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography. Its binding ability to F-actin remained after heating at 95 degrees C for 4 min. Immunoblot analyses indicated that p33 was not a degradation product from higher molecular components. The binding of p33 to F-actin was saturable in a molar ratio of about one p33 to 2-3 actin molecules with an apparent binding constant of 6.6 x 10(7) M-1. p33 also bound to calmodulin and tropomyosin. The bindings of p33 to F-actin and tropomyosin were regulated by calmodulin in a Ca(2+)-dependent fashion. In addition to actin, caldesmon and tropomyosin, p33 was contained in the native thin filaments prepared from smooth muscle. Other actin-binding proteins, including alpha-actinin, caldesmon and filamin, had little effect on p33 binding to actin filaments. These results demonstrate that p33 may function in actin-based cellular processes which are mediated by Ca2+ and calmodulin.  相似文献   

2.
Biological molecular motors that are constrained so that function is effectively limited to predefined nanosized tracks may be used as molecular shuttles in nanotechnological applications. For these applications and in high-throughput functional assays (e.g., drug screening), it is important that the motors propel their cytoskeletal filaments unidirectionally along the tracks with a minimal number of escape events. We here analyze the requirements for achieving this for actin filaments that are propelled by myosin II motor fragments (heavy meromyosin; HMM). First, we tested the guidance of HMM-propelled actin filaments along chemically defined borders. Here, trimethylchlorosilane (TMCS)-derivatized areas with high-quality HMM function were surrounded by SiO(2) domains where HMM did not bind actin. Guidance along the TMCS-SiO(2) border was almost 100% for filament approach angles between 0 and 20 degrees but only about 10% at approach angles near 90 degrees . A model (Clemmens, J.; Hess, H.; Lipscomb, R.; Hanein, Y.; Bohringer, K. F.; Matzke, C. M.; Bachand, G. D.; Bunker, B. C.; Vogel, V. Langmuir 2003, 19, 10967-10974) accounted for essential aspects of the data and also correctly predicted a more efficient guidance of actin filaments than previously shown for kinesin-propelled microtubules. Despite the efficient guidance at low approach angles, nanosized (<700 nm wide) TMCS tracks surrounded by SiO(2) were not effective in guiding actin filaments. Neither was there complete guidance along nanosized tracks that were surrounded by topographical barriers (walls and roof partially covering the track) unless there was also chemically based selectivity between the tracks and surroundings. In the latter case, with dually defined tracks, there was close to 100% guidance. A combined experimental and theoretical analysis, using tracks of the latter type, suggested that a track width of less than about 200-300 nm is sufficient at a high HMM surface density to achieve unidirectional sliding of actin filaments. In accord with these results, we demonstrate the long-term trapping of actin filaments on a closed-loop track (width < 250 nm). The results are discussed in relation to lab-on-a-chip applications and nanotechnology-assisted assays of actomyosin function.  相似文献   

3.
Treatment of chick embryo fibroblasts with 0.5% Triton X-100 extracts most of the cell protein, leaving an organized part of the cell structure attached to the tissue culture dish. This "Triton cytoskeleton" consists largely of intermediate-sized filaments and bundles of microfilaments. SDS polyacrylamide gel electrophoresis reveals that this cytoskeleton is made up of three main proteins. One protein component is 42,000 daltons and co-migrates with muscle actin. The other two components are 52,000 and 230,000 daltons and remain quantitatively associated with the cytoskeleton during the detergent extraction. The possible identity of these three protein components and their organization into a supramolecular structure is discussed.  相似文献   

4.
Abstract We have labeled rabbit skeletal muscle actin with the triplet probe erythrosin-5-iodoacetamide and characterized the labeled protein. Labeling decreased the critical concentration and lowered the intrinsic viscosity of F-actin filaments; labeled filaments were motile in an in vitro motility assay but were less effective than unlabeled F-actin in activating myosin S1 ATPase activity. In unpolymerized globular actin (G-actin), both the prompt and delayed luminescence were red-shifted from the spectra of the free dye in solution and the fluorescence anisotropy of the label was high (0.356); filament formation red shifted all excitation and emission spectra and increased the fluorescence anisotropy to 0.370. The erythrosin phosphorescence decay was at least biexponential in G-actin with an average lifetime of 99 μs while in F-actin the decay was approximately monoexponential with a lifetime of 278 μs. These results suggest that the erythrosin dye was bound at the interface between two actin monomers along the two-start helix. The steady-state phosphorescence anisotropy of F-actin was 0.087 at 20°C and the anisotropy increased to ≈0.16 in immobilized filaments. The phosphorescence anisotropy was also sensitive to binding the physiological ligands phalloidin, cytochalasin B and tropomyosin. This study lays a firm foundation for the use of this triplet probe to study the large-scale molecular dynamics of F-actin.  相似文献   

5.
We studied the three-dimensional (3D) distribution of actin filaments and mitochondria in relation to ACBT glioblastoma cells migration. We embedded the cells in the spheroid form within collagen hydrogels and imaged them by in situ multiphoton microscopy (MPM). The static 3D overlay of the distribution of actin filaments and mitochondria provided a greater understanding of cell-to-cell and cell-to-substrate interactions and morphology. While imaging mitochondria to obtain ratiometric redox index based on cellular fluorescence from reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide we observed differential sensitivity of the migrating ACBT glioblastoma cells to femtosecond laser irradiation employed in MPM. We imaged actin-green fluorescent protein fluorescence in live ACBT glioma cells and for the first time observed dynamic modulation of the pools of actin during migration in 3D. The MPM imaging, which probes cells directly within the 3D cancer models, could potentially aid in working out a link between the functional performance of mitochondria, actin distribution and cancer invasiveness.  相似文献   

6.
We aim to describe the metabonomic characteristics of myocardial infarction rats. High‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry was utilized to develop a metabonomic method of the heart homogenates of myocardial infarction rats. Hydrophilic interaction chromatography allows the analysis of high polar metabolites, providing complementary information to reversed‐phase liquid chromatography. We combined reversed phase and hydrophilic interaction chromatographic separations to analyze 18 samples, ten from myocardial infarction rat hearts and eight from normal rat hearts. A total of 16 potential biomarkers in rat heart tissue were screened out, primarily related to oxidative stress, nitric oxide damage, taurine, and hypotaurine metabolism and sphingolipid metabolism. This research showed that a comprehensive metabonomic study is a useful tool to reveal the underlying mechanism of myocardial infarction.  相似文献   

7.
Teleost retinal cones contract in light and elongate in darkness. This paper describes the disposition of microtubules and cytoplasmic filaments in cone cells of 2 species of fish (Haemulon sciurus and Lutjanus griseus). In Haemulon, the neck-like "myoid" region of the cone changes in length from 5 mu to 75 mu. Maximal observed rates of elongation and contraction are comparable to that of chromosome movement in mitosis (2-3 mu/min). Microtubules presumably participate in cone elongation, since numerous longitudinal microtubules are present in the myoid region, and colchicine blocks dark-induced elongation. Myoid shortening, on the other hand, appears to be an active contractile process. Disruption of microtubules in dark-adapted cones does not produce myoid shortening in the absence of light, and light-induced myoid shortening is blocked by cytochalasin-B. Cone cells possess longitudinally-oriented thin filaments which bind myosin subfragment-1 to form arrowhead complexes typical of muscle actin. Myoid thin filaments are clearly observed in negatively stained preparations of isolated cones which have been disrupted with detergent after attachment to grids. These myoid filaments are not, however, generally preserved by conventional fixation, though bundles of thin filaments are preserved in other regions of the cell. Thus, actin filaments are poorly retained by fixation in precisely the region of the cone cell where contraction occurs. Cone cells also possess longitudinally-oriented thick filaments 130-160 A in diameter. That these thick filaments may be myosin is suggested by the presence of side-arms with approximately 150 A periodicity. The linear organization of the contractile apparatus of the retinal cone cell makes this cell a promising model for morphological characterization of the disposition of actin and myosin filaments during contraction in a nonmuscle cell.  相似文献   

8.
Skeletal and cardiac muscle contains actin isoforms that vary by two juxtaposed amino acids and two amino acid substitutions (Met299Leu and Ser358Thr). This close sequence homology does not allow cardiac and skeletal actin isoforms to be resolved in traditional SDS-PAGE analysis as the molecular weights (Deltamass = 32 Da) are not significantly different and the pIs are identical (5.2). Although cardiac actin is the predominant form in cardiac muscle, there appears to be a specific skeletal/cardiac actin ratio in a normal heart that may vary in a compromised or diseased heart. In an effort to ascertain the validity of this hypothesis we developed a mass spectrometric technique to measure the ratio of skeletal to cardiac actin. The technique involves purification of muscle actin and subsequent liquid chromatography coupled with electrospray ionization Fourier transform ion cylcotron resonance (LC/FTICR-MS) mass spectrometry. A 7 Tesla FTICR mass spectrometer was utilized to compare skeletal/cardiac actin isoform ratios. Additionally, a new dual electrospray ionization source was employed to determine accurate masses of the alpha-skeletal and alpha-cardiac actins.  相似文献   

9.
The actin-targeting toxins have not only proven to be invaluable tools in studies of actin cytoskeleton structure and function but they also served as a foundation for a new class of anticancer drugs. Here, we describe that amphidinolide H (AmpH) targets actin cytoskeleton. AmpH induced multinucleated cells by disrupting actin organization in the cells, and the hyperpolymerization of purified actin into filaments of apparently normal morphology in vitro. AmpH covalently binds on actin, and the AmpH binding site is determined as Tyr200 of actin subdomain 4 by mass spectrometry and halo assay using the yeast harboring site-directed mutagenized actins. Time-lapse analyses showed that AmpH stimulated the formation of small actin-patches, followed by F-actin rearrangement into aggregates via the retraction of actin fibers. These results indicate that AmpH is a novel actin inhibitor that covalently binds on actin.  相似文献   

10.
Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents of cell membranes. To clarify the effect of cross talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, the actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the bulk water droplet accompanied by the dissolution of actin filaments from the membrane surface. The attraction between actin filaments and membrane is attributable to an increase in the translational entropy of counterions accompanied by the adsorption of actin filaments onto the membrane surface. These results suggest that a microscopic water droplet coated with phospholipid can serve as an easy-to-handle model of cell membranes.  相似文献   

11.
Although several molecular markers for human breast cancer exist, their versatility is limited. Here we demonstrate, through a differential proteome analysis utilizing the fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) method between seven cancer cells and one normal cell, that the presence of cooperatively expressed annexin-2 and galectin-1 without tropomyosin-1 in a tissue could be used to diagnose metastatic breast cancer. Interestingly, in a metastatic cancer cell, the expression of the former two together with highly expressed cofilin-1 activates the Rho signal pathway to aggressively form disorganized actin filaments. Despite the excess expression of annexin-2 and galectin-1 in the normal cell, the highly expressed tropomyosin-1 counteracted the activity of cofilin-1 and stabilized the filaments, resulting in the restoration of the disorganization. This phenomenon suggests that enhancement of tropomyosin-1 should be used as therapy for metastatic breast cancer.  相似文献   

12.
Actin polymerization is an essential process in eukaryotic cells that provides a driving force for motility and mechanical resistance for cell shape. By using preformed gelsolin–actin nuclei and applying stopped‐flow methodology, we quantitatively studied the elongation kinetics of actin filaments as a function of temperature and pressure in the presence of synthetic and protein crowding agents. We show that the association of actin monomers to the pointed end of double‐stranded helical actin filaments (F‐actin) proceeds via a transition state that requires an activation energy of 56 kJ mol?1 for conformational and hydration rearrangements, but exhibits a negligible activation volume, pointing to a compact transition state that is devoid of packing defects. Macromolecular crowding causes acceleration of the F‐actin elongation rate and counteracts the deteriorating effect of pressure. The results shed new light on the combined effect of these parameters on the polymerization process of actin, and help us understand the temperature and pressure sensitivity of actin polymerization under extreme conditions.  相似文献   

13.
Monoamine oxidase A(MAO-A) is a prominent myocardial source of reactive oxygen species(ROS), and its expression and activity are strongly increased in failing hearts. Therefore, accurate evaluation of MAOA activity in cardiomyocytes is of great importance for understanding its biological functions and early diagnosing the progression of heart failure. However, so far, there is no report on the fluorescent diagnosis of heart failure by a specific probe for MAO-A. In this work, two far-red emissiv...  相似文献   

14.
We have characterized rationally designed and optimized analogues of the actin-stabilizing natural products jasplakinolide and chondramide C. Efficient actin staining was achieved in fixed permeabilized and non-permeabilized cells using different combinations of dye and linker length, thus highlighting the degree of molecular flexibility of the natural product scaffold. Investigations into synthetically accessible, non-toxic analogues have led to the characterization of a powerful cell-permeable probe to selectively image static, long-lived actin filaments against dynamic F-actin and monomeric G-actin populations in live cells, with negligible disruption of rapid actin dynamics.  相似文献   

15.
Myocardial infarction (MI) damage induces various types of cell death, and persistent ischemia causes cardiac contractile decline. An effective therapeutic strategy is needed to reduce myocardial cell death and induce cardiac recovery. Therefore, studies on molecular and genetic biomarkers of MI, such as microRNAs (miRs), have recently been increasing and attracting attention due to the ideal characteristics of miRs. The aim of the present study was to discover novel causative factors of MI using multiomics-based functional experiments. Through proteomic, MALDI-TOF-MS, RNA sequencing, and network analyses of myocardial infarcted rat hearts and in vitro functional analyses of myocardial cells, we found that cytochrome c oxidase subunit 5a (Cox5a) expression is noticeably decreased in myocardial infarcted rat hearts and myocardial cells under hypoxic conditions, regulates other identified proteins and is closely related to hypoxia-induced cell death. Moreover, using in silico and in vitro analyses, we found that miR-26a-5p and miR-26b-5p (miR-26a/b-5p) may directly modulate Cox5a, which regulates hypoxia-related cell death. The results of this study elucidate the direct molecular mechanisms linking miR-26a/b-5p and Cox5a in cell death induced by oxygen tension, which may contribute to the identification of new therapeutic targets to modulate cardiac function under physiological and pathological conditions.Subject terms: Protein-protein interaction networks, Predictive markers  相似文献   

16.
Actin is one of the important elements of the striated muscle that transmits force from the myosin filaments and as a part of the cytoskeleton plays an important role in shape determination of cells. It is a known experience that removal of the divalent cation affects the dynamic behaviour of actin in both forms. Paramagnetic probes and electron paramagnetic resonance (EPR) spectroscopy provide direct technique by which the rotation and the orientation of specifically labelled proteins can be followed during biochemical manipulations. The spectroscopic measurements could be combined with DSC measurements that report domain stability and interactions and allow the calculation of the thermodynamic parameters during the melting process. Actin was spin-labelled with maleimide or fluoro-dinitro proxyl probe molecules which are bound to the Cys-374 or Lys-61 residues of the smaller domain. EPR spectroscopy spectra were recorded in monomer form in Ca- and EGTA-state as a function of temperature up to the melting point. Similarly, DSC measurements were performed and analyzed using the kinetic theory. The measurements showed that removal of the divalent cation from the globular actin induced significant local and global structural change both in the thermodynamic properties and the rotational mobility of actin detected by DSC and EPR. On the basis of the results derived by deconvolution of the DSC pattern we can suggest a non-interactive two-domain melting for the monomer actin after removing the divalent cations.  相似文献   

17.
The cardiac muscle proteins, myosin and actin, were purified in one step using a salicylate-silica affinity column. The affinity columns were prepared by coupling sodium salicylate via its hydroxyl group to an Altex Ultraffinity-EP column. Crude detergent extracts from guinea pig hearts were passed through the column and the myosin-actin complex was then eluted with excess free salicylate or high salt. The affinity of cardiac myosin for immobilized salicylate was unique as myosin heavy chain from guinea pig leg muscle detergent extracts could not be purified by this procedure. Commercially purified rabbit leg muscle myosin also appeared to have no interaction with the salicylate affinity column, suggesting that the column is specific for cardiac myosin.  相似文献   

18.
The cytochalasins (CE, CD, CB and H2CB) inhibit numerous cellular processes which require the interaction of actin with other structural and contractile proteins. In this report we describe the effects of the cytochalasins on the viscosity and morphology of muscle and platelet actin. The cytochalasins decreased the viscosity of F-actin solutions. The effect of H2CB, CB and CD ON F-actin viscosity was maximal at concentrations of 20-50 micro M and did not increase with time. In contrast, CE caused a progressive decrease in the viscosity of F-actin solutions which was dependent upon the concentration of CE and the duration of incubation of the CE-actin mixture. After two hours of incubation of drug-actin mixtures, the relative effectiveness of the cytochalasins in reducing the viscosity of F-actin was CE greater than CD greater than CB=H2CB. The effects of CD and CE were paralleled by morphologic changes in negatively stained actin filaments. The effects of the cytochalasins on the viscosity and morphology of muscle and platelet actin were the same whether the drugs were added before or after the polymerization of the protein. These studies show that the interaction of the cytochalasins with actin is highly specific. Because the relative potencies of these drugs for affecting motile processes and the relative affinities of the drugs for binding sites within a variety of cells are CE greater than CD greater than CB=H2CB, the effects of cytochalasins on actin described here may contribute to some of the biological effects of the drugs on motile processes.  相似文献   

19.
In vivo studies have shown that the cytoskeleton of cells is very sensitive to changes in temperature and pressure. In particular, actin filaments get depolymerized when pressure is increased up to several hundred bars, conditions that are easily encountered in the deep sea. We quantitatively evaluate the effects of temperature, pressure, and osmolytes on the kinetics of the polymerization reaction of actin by high‐pressure stopped‐flow experiments in combination with fluorescence detection and an integrative stochastic simulation of the polymerization process. We show that the compatible osmolyte trimethylamine‐N‐oxide is not only able to compensate for the strongly retarding effect of chaotropic agents, such as urea, on actin polymerization, it is also able to largely offset the deteriorating effect of pressure on actin polymerization, thereby allowing biological cells to better cope with extreme environmental conditions.  相似文献   

20.
A living cell has a crowded environment with a dense distribution of molecules that requires structured organization for its efficient functioning. One component of this structure, the actin cytoskeleton, is essential for providing mechanical support and facilitating many response activities, including the contraction of muscle cells and chemotaxis. Whereas many investigations have provided insight into the mechanical response from either an in vivo or in vitro perspective, a significant gap exists in determining how the living cell response and the polymer physics response are bridged. The understanding of these systems involves studying their components, including the individual cytoskeletal elements versus the higher-order organism organization in a living cell. Here, we leverage this organization in nature by using a chemistry-based approach to mimic the cytoskeleton in an artificial environment composed of spherically distributed lipid bilayers. This construct bears similarities to the cell membrane. To create a structurally regulated environment, we encapsulate G-actin into giant unilamellar vesicles and then polymerize actin filaments within individual liposomes. We visualize these vesicles with epifluorescence microscopy and confocal microscopy. Atomic force microscopy is then used to probe the mechanical properties of these artificial cells. This polymer cytoskeletal network appears to connect with the lipid bilayer and span the internal space within the liposomes in a manner similar to what is observed in living cells. This work will have implications in a variety of fields, including chemistry, polymer physics, structural biology, and engineering mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号