首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of the commercially available polymeric membranes are prepared by the phase inversion process. In this process a thermodynamically stable polymer solution is brought to phase separation by immersing the solution in a surplus of nonsolvent, followed by an exchange of solvent and nonsolvent. The ultimate membrane structure is the result of an interplay of mass transfer and phase separation. Asymmetric membranes as well as symmetrical porous membranes can be obtained. Two types of demixing processes (l-l phase separation and formation of aggregates) can be distinguished by the kinetics of phase separation, as the formation of aggregates is supposed to be a slower process than l-l demixing. Because it is impossible to measure the composition changes during the demixing processes experimentally, a theoretical analysis has to be applied. A suitable formalism to calculate the diffusion induced composition changes in the immersed casting solution, as a function of thermodynamic and hydrodynamic interaction parameters will be described. With this theory it can be shown that two distinctly different mechanisms of membrane formation may occur resulting in two different types of membranes. One type has a relatively thick toplayer and mostly exhibits reverse osmosis, gas separation and pervaporation properties; the other type results in a porous type of membrane, which will exhibit ultra- and microfiltration properties. Model calculations are in agreement with light transmission experiments on membrane forming systems. Therefore, it could be concluded that the elucidation of the diffusion behavior in the immersed polymer film is the key to better understanding of membrane formation by means of immersion precipitation.  相似文献   

2.
A derivation is presented of a ternary diffusion model to describe the mass transfer processes associated with the quench bath period of the phase inversion process for membrane formation. The complete governing equations, initial conditions, and boundary conditions in the casting film and coagulation bath are presented. Equations for ternary chemical potentials and diffusion coefficients are consistently based on constant specific volume formulations. The model is applied to the analysis of mass transfer paths and their effects on membrane structure formation. Precipitation times are determined for given sets of conditions by superposing calculated mass transfer paths on the ternary phase diagram and observing when the miscibility gap is crossed. Comparisons are made with an earlier reported study on the membrane-forming system: water-acetone-cellulose acetate (CA). Agreement between predicted and measured precipitation times is found to be excellent. The polymer film composition profile at the moment of precipitation is shown to be a useful indicator of both skin and sublayer structures, allowing distinctions to be made between conditions leading to spongelike and fingerlike morphologies. The influence of model parameters on the mass transfer paths and associated polymer profiles is also discussed.  相似文献   

3.
扩散致相转化法制备结晶性聚合物多孔膜   总被引:6,自引:0,他引:6  
介绍了扩散致相转化法制备结晶性聚合物多孔膜的研究现状。其三元等温成膜体系的相图包含液-液分相和固-液分相两种相分离方式,是理解成膜过程的重要工具,总结了成膜机理和膜的结构形貌:单纯S-L相分离生成粒子状对称膜结构;单纯L-L相分离生成蜂窝状非对称膜结构;两种相分离方式竞争发生将生成多样的混合膜结构。铸膜液浓度、非溶剂种类、铸膜溶剂组成、凝胶浴组成、制膜温度是影响膜结构形貌的主要因素。  相似文献   

4.
High throughput (HT) techniques were applied for the first time for a detailed study of parameters involved in a phase inversion process. The synthesis of integrally skinned asymmetric polyimide (Matrimid®) membranes was investigated. In spite of being one of the most important materials of reference in solvent resistant nanofiltration (SRNF), a detailed study of the phase inversion parameters for this system is still missing. Phase inversion parameters were selected both on the level of the composition of the casting solution (polymer concentration, solvent type, co-solvent/solvent weight ratio, non-solvent content) as on the level of the post-casting (evaporation time) and immersion (composition coagulation medium) conditions. The study of this extensive parameter space was conducted in a HT-fashion, in which the entire membrane preparation and testing process was miniaturized, parallellized and automated. Thanks to the availability of reliable HT techniques at all levels (i.e. preparation of polymer solutions, membrane casting and membrane testing), 145 membranes were prepared and tested (in triplicate) in the separation of the dye rose Bengal from 2-propanol within a time frame of a few months, meaning a dramatic improvement in time- and cost-efficiency. An attempt was made to link the SRNF performances of the prepared membranes and their SEM-observed morphologies more fundamentally to the phase inversion parameters through the use of Hansen solubility parameters and viscosity measurements.  相似文献   

5.
Polymeric membranes based on cellulose acetate (CA)--sulfonated polysulfone blends at three different polymer compositions were prepared by solution blending and phase inversion technique, characterized and subjected to annealing at 70, 80 and 90 °C. The permeate water flux, separation of bovine serum albumin and its flux by the blend membranes before and after thermal treatment, have been compared and discussed. Similarly, CA and epoxy resin (diglycidyl ether of bisphenol-A) were blended in various compositions, in the presence and in the absence of polyethyleneglycol 600 as non-solvent additive, using N,N-dimethylformamide as solvent, and used for preparing ultraflltration membranes by phase inversion technique. The polymer blend composition, additive concentration, casting and gelation conditions were optimized. Blend membranes were characterized in terms of compaction, pure water flux, water content and membrane resistance. The effects of polymer blend composition and additive concentration on the above parameters were determined and the results are discussed.  相似文献   

6.
We propose a theory for the appearance of two-phase structures during the formation of polymer membranes from a casting solution immersed in a coagulant bath. Our model is based on diffusion induced phase separation at the spinodal in the ternary nonsolvent-solvent-polymer system. A simplified treatment of the interdiffusion process by the diffusion layer method permits the formulation of criteria for the formation of two-phase structures in the course of the solvent-coagulant exchange. Our criteria are expressed in terms of the composition dependence of the chemical potentials in the stable and metastable region of the ternary phase diagram. Comparison with experimental results shows qualitative similarities with theoretical predictions.  相似文献   

7.
Semi-interpenetrating polymer networks (semi-IPNs) were prepared by sol–gel technique through in situ polymerization of bismaleimide (BMI) in thermoplastic polyetherimide (PEI) as well as in polysulfone (PSF). This synthesis route allows arresting thermoset/thermoplastic phase separation at an early stage by solidifying the semi-IPNs through membrane phase inversion. The phase separation could be observed visually in the casting solution or by optical microscope on the surface of the produced membranes. These semi-IPNs with a density lower than their thermoplastic base polymer allowed easier water penetration during membrane phase inversion. This led to improved membrane morphology that was confirmed by scanning electron microscopy. Membranes fabricated from these semi-IPN materials had thinner skin layers and longer straight fingers perpendicular to membrane surface. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that these semi-IPNs membranes have improved glass transition temperatures but a lower thermal stability. However, at ambient conditions, these membranes with their improved structure and morphology showed superior gas separation characteristics compared to base polymers. For example, the permeance was increased by 12–15 times without a significant decrease in the selectivity of oxygen over nitrogen in air separation experiments.  相似文献   

8.
Flat sheet porous polysulfone–silver nanocomposite membranes were synthesized by the wet phase inversion process. The effects of casting mixture composition and nanoparticle incorporation route on the morphological and separation properties of prepared membranes were studied by comparing nanocomposites of different preparations with silver-free controls. Silver nanoparticles were either synthesized ex situ and then added to the casting solution as an organosol or produced in the casting solution via in situ reduction of ionic silver by the polymer solvent. Nanocomposite membranes of three types differing in skin porosity and macrovoid structure were prepared. The structure and properties of nanocomposites were interpreted in terms of the coupling between the processes of nanoparticle formation and gelling of the polymer-rich phase during phase inversion. Larger nanoparticles preferentially located in the skin layer were observed in composites prepared via the ex situ method while in situ reduction of silver led to formation of smaller nanoparticles homogeneously distributed along the membrane cross-section. In some cases, incorporation of nanoscale silver formed ex situ resulted in macrovoid widening and an order of magnitude decrease in hydraulic resistance accompanied by only a moderate decrease in rejection. The accessibility of the silver nanoparticles embedded in the membrane was quantitatively assessed by the degree of the growth inhibition of a membrane biofilm due to the ionic silver released by the nanocomposites and was found to depend on the method of silver incorporation.  相似文献   

9.
制膜条件对PVDF膜形态结构的影响   总被引:19,自引:0,他引:19  
对干湿相转换法制备聚偏氟乙烯微孔膜进行了研究。利用光透射仪研究了不同制膜条件下成膜分相速度及其变化规律,用气体渗透法测定了膜的平均孔径和有效孔隙率,并结合电镜照片对不同制膜条件下膜的结构和性能进行了表征。实验结果表明较低的铸膜液温度和凝胶浴温度、较短的蒸发时间和较低聚合物浓度有利于增加膜的有效孔隙率。在铸膜液中加入非溶剂是提高膜性能的一种手段,但非溶剂的加入量需足够大,以抵消铸膜液温度提高引起的相反的效应。  相似文献   

10.
A novel process was proposed for preparation of microporous poly(acrylonitrile–methyl methacrylate) (P(AN–MMA)) membranes by phase inversion techniques using ultrasonic humidifier. Being prepared by dissolving the polymer (PAN–MMA) in the N,N-dimethylformamide (DMF) solution with mechanical stirring, the homogenous casting solution was cast onto a clean glass plate. Successively, the glass plate was exposed to the water vapor produced by ultrasonic humidifier, inducing the phase inversion. It is found the pore size is much more uniform across the cross-section of the membrane than that of the porous membrane prepared by conventional water bath coagulation technique. The microporous membranes were directly obtained after the washing and drying. It had about 1–5 μm of pores and presented an ionic conductivity of 2.52 × 10−3 S/cm at room temperature when gelled with 1 M LiPF6/EC-DMC (1:1 vol.%) electrolyte solution. The test cells with the gel electrolytes prepared from as-prepared microporous membranes showed stable cycling capacities, indicating that the microporous membrane, which was prepared from cheap starting materials acrylonitrile and methyl methacrylate, can be used for the gel electrolyte of lithium batteries.  相似文献   

11.
An analysis of the effects of combined evaporation and quench periods on the formation of asymmetric membranes by the phase inversion technique is presented. The model for the evaporation period assumes binary diffusion and includes composition dependence in the mutual diffusion coefficient and free convection mass transfer in the gas phase. The quench period model includes the use of 4 composition-dependent diffusion coefficients and incorporates a modified from of the interface jump mass balance which enables efficient numerical analysis of composition gradients in the film at the beginning of the quench period. Results for the effects of evaporation-period variable, including: evaporation time, initial cast film thickness, casting surface dimension, and vapor-phase composition, clearly indicate that significant effects of the evaporation period on membrane structure formation and its reproducibility occur within 20 seconds.  相似文献   

12.
Structural regular polyaniline was synthesized via a modified-chemical oxidative polymerization reaction. Highly hydrophilic polyaniline (PANi) and polyaniline-poly(vinylidene fluoride) blend (PANi-PVDF) membranes were prepared by solution casting and phase inversion techniques. Both of the mechanical and filtration properties of the membranes depend on the polymer composition and doping level of the blends. The elasticity of the membrane is greatly improved upon introducing poly(vinylidene fluoride) into the blend. The water permeability of the blend membranes is further enhanced when the membranes are doped with hydrochloric acid. The PANi-PVDF blend membranes are capable of recovering metallic gold from the acid/halide leaching streams spontaneous and sustainably, and are promising candidates for wastewater treatments in electronic industries.  相似文献   

13.
Prediction and control of membrane morphology using multi‐phase thermodynamic knowledge are of growing interest. The water/dimethylsulfoxide/polyethersulfone ternary system is a widely used casting dope for the preparation of MF, UF, and NF membranes. In the current study, Flory–Huggins (F–H) model was applied to predict the behavior of this ternary system during phase inversion. Titration method was applied to generate cloud point data. The prediction accuracy of the F–H model was directly dependent on the binary interactions of the system components. The compressible regular solution (CRS) model predicts the binodal location using only the pure component properties as the input parameters. Accordingly, the influence of binary parameters on the location of the binodal curves was investigated. The predicted binodal points showed superior accordance with the experimental data, where the binary interaction between nonsolvent (water) and solvent (DMSO) was overlooked. In addition, the modelling results emphasized on the pivotal importance of the interactions between polymer (PES) and nonsolvent (water) on the phase inversion and thus, on the control of the membrane morphology. The CRS model offered a greater conformity with the experimental results in comparison with the F–H theory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The use of two nonsolvents serving as a cosolvent system, replacing the traditional volatile solvent plus less volatile nonsolvent system, in the formation of asymmetric phase inversion membranes was investigated. Specifically, asymmetric membranes of sulfonated polysulfone were cast from a cosolvent system consisting of tetrahydrofuran and formamide. The nonsolvents and the proportions in which they are mixed to produce the cosolvent system, as well as the gelation medium isopropyl alcohol, were selected based on the three-component solubility parameter concept of Hansen. The structure of each membrane was evaluated using scanning electron microscopy; the performance was evaluated for use in pressure-driven membrane separation processes. The membranes were found to be dependent on the composition of the original casting solution and the composition of the nascent membrane at the instant of gelation. These ideas are clearly represented through the use of a triangular polymer solubility diagram.  相似文献   

15.
To improve surface protein-adsorption-resistant property of polyethersulfone (PES) membranes, soybean phosphatidylcholine (SPC) was added to PES casting solution. The blend membranes were prepared by a phase inversion method in a wet process. The surface of PES/SPC blend membranes was characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS data revealed that the phosphorylcholine (PC) groups were concentrated at the surface by changing the composition of coagulation bath. Addition of N,N-dimethylformamide (DMF) in coagulation bath could prolong coagulation time and facilitate the migration of SPC from polymer bulk to membrane surface. The PES/SPC blend membranes dramatically reduced BSA and fibrinogen adsorption compared to PES control membrane due to effective immobilization of PC groups at the surface of PES/SPC blend membranes.  相似文献   

16.
Mass transfer process involved in the immersion precipitation of polyurethane/dimethylformamide (DMF)/water system was investigated. The set of diffusion equations describing the local composition of the membrane solution as a function of space coordinate and time were solved by numerical method, and the composition path in the phase diagram was obtained. Instead of boundary conditions based on the instantaneous equilibrium assumption between membrane solution and coagulation bath, new boundary conditions were set up by using mass transfer formalism at the interface which is especially valid in the condition that the mass transfer rate is extremely rapid. Phase separation phenomena during immersion precipitation were taken into account to continue the calculation after phase separation. The calculated results showed that the chance of phase separation via spinodal decomposition increases with the strength of nonsolvent, addition of nonsolvent to the dope solution, and the use of more hydrophobic polymer. The proposed model is the improvement of the previous works eliminating the equilibrium assumption at the interface and extending the calculation after phase separation.  相似文献   

17.
For the first time the combination of solution casting and solvent–nonsolvent exchange (phase inversion) has been applied to generate asymmetric membranes with highly ordered hexagonally packed cylinders with perpendicular orientation composed of polystyrene-block-poly(ethylene oxide). The influence of parameters like solvent composition and evaporation time on the membrane formation is presented. The development is based on a study of the solution behavior by dynamic light scattering and the precipitation behavior of the cylinder forming diblock copolymer by turbidity measurements from different solvent and nonsolvent systems. The water flux properties, as an important membrane characteristic, show a time dependent behavior, due to swelling of the polyethylene oxide blocks. The morphologies of the membranes are imaged by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

18.
In the present work, PMMA membranes were prepared by wet phase immersion methods to improve their gas fluxes. It is found that different membrane structure can be obtained by using different nonsolvent-solvent pairs. To completely describe the membrane formation process, the nonsolvent-solvent miscibility and the interfacial polymer concentration in casting solution should be considered accompanied by the ternary phase diagram. A simplified solution-diffusion model was developed to estimate the interfacial polymer concentration. In addition, the effects of adding solvent into the coagulation bath and adding nonsolvent into the casting solution are discussed.  相似文献   

19.
全面地综述了浸没凝胶相转化法制备的聚合物微孔膜的表面和膜中存在的各种孔的结构和形态,从制膜体系的热力学性质和成膜动力学角度解释了各种孔结构形态的形成和生长机理,即膜表面与膜中孔的结构形态由此时制膜体系发生的相分离类型决定,由此可推断出不同的膜层可能有不同的成膜机理。因此,只要掌握了各种膜孔结构形成的机理,通过改变膜的制备条件,控制体系的热力学性质与成膜时动力学扩散是可以实现相转化膜结构的控制。  相似文献   

20.
以甲苯为溶剂,利用超临界CO_2诱导相转化法制备了多孔非对称聚苯乙烯膜.通过扫描电镜对膜结构进行了表征,探讨了不同温度、压力和铸膜液中聚苯乙烯浓度对膜形态、孔径分布及膜孔隙率的影响;同时,基于Tompa扩展的Flory-Huggins聚合物溶液理论计算了聚苯乙烯/超临界CO_2/甲苯铸膜体系的三元相图.研究表明,在温度为35~65℃、压力为8~16 MPa及聚合物质量分数为15%~35%条件下,制备的聚苯乙烯膜截面呈胞腔状孔结构,孔隙率为53.54%~84.67%,且孔隙率随温度、压力和聚苯乙烯浓度均呈现出先增大后减小的趋势.相图计算结果表明,温度对体系双节线位置的改变影响较小,而压力对其影响相对较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号