首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a traditional etchant, pure buffered hydrofluoric acid (BHF), does not possess the ability to etch BST thin films annealed at high temperature, even though it works greatly on as-deposited Ba0.5Sr0.5TiO3 (BST) films. In this paper, we developed an etchant by mixing BHF and strong acid (HNO3, HCl, H2SO4 and H3PO4) and use it successfully on BST films annealed with high temperature. The experimental results show that a 1-8 wt% of strong acid acts as an efficient catalyst and the etching speed is significantly improved. The etched BST films show little distortions and smooth etching edges were recorded.  相似文献   

2.
This paper studies the wet etching behavior of AZO (ZnO:Al) transparent conducting film with tetramethylammonium hydroxide (TMAH). The optimum optoelectronic film is prepared first using designated RF power, film thickness and controlled annealing heat treatment parameters. The AZO film is then etched using TMAH etchant and AZ4620 photoresist with controlled etchant concentration and temperature to examine the etching process effect on the AZO film optoelectronic properties. The experimental results show TMAH:H2O = 2.38:97.62 under 45 °C at the average etch rate of 22 nm/min as the preferred parameters. The activation energy drops as the TMAH concentration rises, while the etch rate increases along with the increase in TMAH concentration and temperature. After lithography, etching and photoresist removal, the conductivity of AZO film dramatically drops from 2.4 × 10−3 Ω cm to 3.0 × 10−3 Ω cm, while its transmittance decreases from 89% to 83%. This is due to the poor chemical stability of AZO film against AZ4620 photoresist, leading to an increase in surface roughness. In the photoresist postbaking process, carbon atoms diffused within the AZO film produce poor crystallinity. The slight decreases in zinc and aluminum in the thin film causes a carrier concentration change, which affect the AZO film optoelectronic properties.  相似文献   

3.
We propose theoretical consideration, computer modeling and comparison with our recent experimental results for information pits recording and etching processes in chalcogenide vitreous semiconductors using Gaussian laser beam and selective etching. Our calculations demonstrate that photo-transformed region cross-section could be almost trapezoidal or parabolic depending on the photoresist material optical absorption, exposure, etchant selectivity and etching time. Thus our approach open possibilities how to select the necessary recording procedure and etching conditions in order to obtain pits with the optimum shape and sizes in As40S60 chalcogenide semiconductor. Obtained results quantitatively describe the characteristics of pits recorded by the Gaussian laser beam in thin film of As40S60.  相似文献   

4.
A novel electroless method of producing porous silicon carbide (PSiC) is presented. Unlike anodic methods of producing PSiC, the electroless process does not require electrical contact during etching. Rather, platinum metal deposited on the wafer before etching serves as a catalyst for the reduction of a chemical oxidant, which combined with UV illumination injects holes into the valence band, the holes subsequently participating in the oxidation and dissolution of the substrate. The etchant is composed of HF and K2S2O8 in water. Various porous morphologies are presented as a function of etchant concentration, time of etching, and SiC polytype. Wafer quality is of the utmost concern when utilizing the electroless wet etchant, since defects such as stacking faults, dislocations, and micropipes have a large impact on the resulting porous structure. Results of imaging and spectroscopic characterization indicate that the porous morphologies produced in this manner should be useful in producing sensors and porous substrates for overgrowth of low dislocation density epitaxial material.  相似文献   

5.
The effects of microstructure and surface terminal bonds of SiO2 aerogel films on dry etching were investigated using Ar, SF6, and C2F6 plasma gases. With Ar plasma etching, physical effect of ion bombardment on porous film was found. In residue-free SF6 plasma etching, reactive etchant transport and high-mass ion bombardment were observed. With C2F6 plasma etching, fluorocarbon residue layer was revealed to maintain surface morphology as acting a barrier to radical transport and ion bombardment. An etching of 450°C-annealed SiO2 aerogel showed that a dense surface induced the decrease in reaction area, inhibition of etchant transport, and then uniform etching.  相似文献   

6.
CH4/H2-based discharges are attractive for dry etching of single crystal ZnO because of their non-corrosive nature. We show that substitution of C2H6 for CH4 increases the ZnO etch rate by approximately a factor of 2 both with and without any inert gas additive. The C2H6/H2/Ar mixture provides a strong enhancement over pure Ar sputtering, in sharp contrast to the case of CH4/H2/Ar. The threshold ion energy for initiating etching is 42.4 eV for C2H6/H2/Ar and 59.8 eV for CH4/H2/Ar. The etched surface morphologies were smooth, independent of the chemistry and the Zn/O ratio in the near-surface region was unchanged within experimental error after etching with both chemistries. The plasma etching improved the band-edge photoluminescence intensity and suppressed the deep level emission from the bulk ZnO under our conditions, due possibly to removal of surface contamination layer.  相似文献   

7.
This work reports on the phase formation during a solid-state reaction of Eu3+-doped garnets with the general formula A3B2Ge3O12 (A=Ca, Sr and B=Ga, In, Y) and their luminescent properties. It is shown by XRD and DTA/TG experiments that the garnet-phase formation is completed at 1100-1200 °C. Moreover, it turned out that the position of the oxygen to europium charge-transfer band and the intensity of the forbidden 4f-4f transitions of Eu3+ is dependent on the covalent interaction between the Eu3+ activator and the surrounding oxygen anions. The investigated red-emitting luminescent materials show high lumen equivalents and deep red emission at the same time, which makes them attractive for the application in LEDs (light emitting diodes), in particular for near UV-emitting LEDs.  相似文献   

8.
使用中国原子能科学研究院HI-13串列加速器产生的32S离子轰击BOPET薄膜,薄膜在空气中陈化3个月后在专用装置中使用Na OH溶液蚀刻制备核孔膜,研究Na OH溶液浓度、蚀刻温度对微孔孔形的影响。在不同温度和蚀刻液浓度条件下,蚀刻出微孔孔径为0.2至0.93μm的亚微米核孔膜,计算其微孔锥角,得出微孔锥角随着蚀刻温度、蚀刻液浓度和微孔孔径的变化趋势。研究表明,采用低浓度、高温度的Na OH溶液蚀刻有利于减小微孔锥角,有利于制备较小孔径的核孔膜。如选用0.5mol/L的Na OH溶液浓度,在蚀刻温度为90℃的条件下蚀刻,此时蚀刻时间小于2 h,既可以得到高质量微孔膜也有利于提高生产效率。  相似文献   

9.
The InAs0.91Sb0.09 ternary compound grown on GaSb substrates is a promising alloy for light detection in the 3–5 μm window. Nevertheless, its development is still limited due to difficulties occurring during device processing. For example, the use of dry etching for the processing of InAs0.91Sb0.09 p–i–n photovoltaïc detectors induces a strong leakage current along the mesa edge. In this letter, we show an improvement of the R0A characteristic by several orders of magnitude at low temperature by using an ion beam etching (IBE) followed by a wet chemical etching. This optimized and reliable device processing allows us to demonstrate that the detector performance is actually limited by the diffusion current of holes. Finally, we discuss the ability of an n-type barrier made of the InAs/AlSb super-lattice to prevent hole diffusion and to improve the R0A characteristic of these detectors.  相似文献   

10.
In this work, an experimental study on the chemical etching reaction of polycrystalline p-type 6H-SiC was carried out in HF/Na2O2 solutions. The morphology of the etched surface was examined with varying Na2O2 concentration, etching time, agitation speed and temperature. The surfaces of the etched samples were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. The surface morphology of samples etched in HF/Na2O2 is shown to depend on the solution composition and bath temperature. The investigation of the HF/Na2O2 solutions on 6H-SiC surface shows that as Na2O2 concentration increases, the etch rate increases to reach a maximum value at about 0.5 M and then decreases. A similar behaviour has been observed when temperature of the solution is increased. The maximum etch rate is found for 80 °C. In addition, a new polishing etching solution of 6H-SiC has been developed. This result is very interesting since to date no chemical polishing solution has been developed on the material.  相似文献   

11.
In this paper, we study Ge2Sb2Te5 phase-change film as a promising inorganic photoresist using organic alkaline: tetramethylammonium hydroxide (TMAH) solution, instead of inorganic alkali or acid as etchant. The basic etching properties are investigated by prior and posterior annealing Ge2Sb2Te5 films. Selectivity is found to be dependent on concentration of TMAH. There is a good selectivity in the 25% TMAH solution, in which the amorphous state is etched away, whereas the crystalline state remains. The etching rate decreases when the concentration of TMAH is diluted; and an opposite selectivity, compared with 25% TMAH solution, is observed in the 0.125% TMAH solution. Selective etching with laser crystallization in different power levels is also studied, and an excellent wet selectivity in the 25% TMAH solution is obtained. The remaining crystalline lines are observed by atomic force microscopy. The surface roughness after etching is at a good level. The selective wet-etching mechanism is also discussed.  相似文献   

12.
Abstract

A series of experiments was performed to study the effect of types of etchant, concentration of etchant, etchant temperature and other parameters on track development in cellulose nitrate, polycarbonate resin, cellulose triacetate, and cellulose acetate butyrate plastic. This work has led to a set of preferred etching conditions for each of these plastics. For example, although there were only slight differences in general etching rate when LiOH, KOH, and NaOH were used as track etchants for cellulose nitrate, the alpha particle registration sensitivity was greatest when NaOH was used. Also in cellulose nitrate the general etching rate and the particle registration sensitivity did not change significantly with increasing concentration for hydroxide solutions > 6 N. This was in marked contrast to other plastics which showed a strong concentration dependence.  相似文献   

13.
Fused KHSO4 can be used as both a polish and a preferential etchant for the {001} surfaces of rutile, depending on the temperature of the system. Polishing occurs at temperatures above 550°C. At temperatures below 550°C, three types of etch pit are observed, two well defined with regular shapes (sides parallel to the <110> and <100> and <130> directions, respectively) and one irregularly shaped. Photochemical deposition of silver [1] onto the crystal surface and subsequent removal (HNO3) prior to etching causes the irregularly shaped pits to be etched more rapidly than in the case of a surface region that was not predeposited. A chemical reaction mechanism is presented to interpret the observed etching behavior. The crystal structure (i.e. the different ionic composition of different crystallographic planes) and surface chemistry of rutile are considered in the formulation of this mechanism. It is suggested that etchant molecules form surface complexes on the TiO2 (after dehydration of surface OH groups) through coordination of Ti4+ via terminal and bridged out-of-plane O2? positions. Evidence is presented to show that the etching rate-determining reaction is the dissolution of these soluble surface complexes. The observed photochemical effects are explained on the basis of the trapping of photogenerated holes or electrons at certain crystal defects.  相似文献   

14.
Monodisperse Cu2O nanocubes are synthesized by reducing freshly prepared Cu(OH)2 with N2H4·H2O in water at room temperature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that most of these nanocubes are uniform in size, with the average edge length of ∼500 nm. Selected area electron diffraction (SAED) investigation reveals that these nanocubes are single crystalline. Further, Cu2O nanoboxes are obtained by etching Cu2O nanocubes with acetic acid solution at room temperature. The nanoboxes retain the size and external morphology of the nanocubes.  相似文献   

15.
F. Gou 《Applied Surface Science》2007,253(21):8743-8748
Molecular dynamics (MD) simulations were performed to investigate F2 continuously bombarding silicon carbide (SiC) surfaces with energies in the range of 50-200 eV at normal incidence and room temperature. The Tersoff-Brenner form potential was used. The simulation results show that the uptake of F atoms, the etch yields of C and Si from the initial substrate, and the surface structure profile are sensitive to the incident energy. Like occurrence in Si etching, steady-state etching is observed and an F-containing reaction layer is formed through which Si and C atoms are removed. A carbon-rich surface layer after bombarding by F2 is observed which is in good agreement with experiments. In the reaction layer, SiF in SiF2 species are dominant; with increasing incident energy, the total fraction of SiF and SiF2 increases, while the amount of SiF3 and SiF4 decreases. Finally, etching mechanisms are discussed.  相似文献   

16.
The effect of etching time on the statistical properties of hydrophilic surfaces of SiO2/TiO2/glass nano bilayers has been studied using atomic force microscopy (AFM) and a stochastic approach based on a level crossing analysis. We have created rough surfaces of the hydrophilic SiO2/TiO2 nano bilayer system by using 26% potassium hydroxide (KOH) solution. Measuring the average apparent contact angle allowed us to assess the degree of hydrophilicity, and the optimum condition was determined to be 10 min etching time. A level crossing analysis based on AFM images provided deeper insight into the microscopic details of the surface topography. With different etching times, it has been shown that the average frequency of visiting a height with positive slope behaves in a Gaussian manner for heights near the mean value and obeys a power law for heights far away from the mean value. Finally, by applying the generalized total number of crossings with positive slope, it was found that the both high heights and deep valleys of the surface have a great effect on the hydrophilic degree of the SiO2/TiO2/glass nano bilayer investigated system.  相似文献   

17.
王长顺  潘煦  Urisu Tsuneo 《物理学报》2006,55(11):6163-6167
利用热氧化法在硅晶片上生长SiO2薄膜,结合光刻和磁控溅射技术在SiO2薄膜表面制备接触型钴掩模,通过掩模方法在硅表面开展了同步辐射光激励的表面刻蚀研究,在室温下制备了SiO2薄膜的刻蚀图样.实验结果表明:在同步辐射光照射下,通入SF6气体可以有效地对SiO2薄膜进行各向异性刻蚀,并在一定的气压范围内,刻蚀率随SF6气体浓度的增加而增加,随样品温度的下降而升高;如果在同步辐射光照射下,用SF6和O2的混合气体作为反应气体,刻蚀过程将停止在SiO2/Si界面,即不对硅刻蚀,实现了同步辐射对硅和二氧化硅两种材料的选择性刻蚀;另外,钴表现出强的抗刻蚀能力,是一种理想的同步辐射光掩模材料. 关键词: 同步辐射刻蚀 接触型钴掩模 二氧化硅薄膜  相似文献   

18.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

19.
This paper reports a study of reactive ion etching (RIE) of n-ZnO in H2/CH4 and H2/CH4/Ar gas mixtures. Variables in the experiment were gas flow ratios, radio-frequency (rf) plasma power, and total pressure. Structural and electrical parameters of the etched surfaces and films were determined. Both the highest surface roughness and highest etching rate of ZnO films were obtained with a maximum rf power of 300 W, but at different gas flow ratios and working pressures. These results were expected because increasing the rf power increased the bond-breaking efficiency of ZnO. The highest degree of surface roughness was a result of pure physical etching by H2 gas without mixed CH4 gas. The highest etching rate was obtained from physical etching of H2/Ar species associated with chemical reaction of CH4 species. Additionally, the H2/CH4/Ar plasma treatment drastically decreased the specific contact and sheet resistance of the ZnO films. These results indicated that etching the ZnO film had roughened the surface and reduced its resistivity to ohmic contact, supporting the application of a roughened transparent contact layer (TCL) in light-emitting diodes (LEDs).  相似文献   

20.
采用磁控溅射,紫外线光刻和离子束刻蚀制备了La2/3Ca1/3MnO3/Eu2CuO4/La2/3Ca1/3MnO3磁性隧道结.通过对获得的磁性隧道结的I-V特性测量,发现非线性的I-V特性,显示结样品的隧穿特性.有趣的是发现在电极材料La2/3Ca1/3MnO3的金属-绝缘体转变温度(Tp)以下,I-V曲线出现一个跳变.随着温度降低,开始出现跳变的临界电流增大,但是跳变都发生在同样的电压下~209mV.当电流增大或减小在跳变点附近出现回滞.这一跳变只发生在铁磁金属态,表明这是一个磁性相关联的效应,可能对应一种新的磁性开关过程.虽然,目前对这一现象背后的物理机理还不清楚,但是,这一现象有可能在未来自旋电子学器件方面具有潜在的应用价值. 关键词: 庞磁电阻 磁性隧道结 开关效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号