首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fractionated illumination scheme in which a cumulative fluence of 100 J cm(-2) is delivered in two equal light fractions separated by a dark interval of 2 h has been shown to considerably increase the efficacy of 5-aminolevulinic acid (ALA)-photodynamic therapy (PDT). The efficacy of such a scheme is further increased if the fluence of the first light fraction is reduced to 5 J cm(-2). We have investigated the relationship between the PDT response and the kinetics of protoporphyrin IX (PpIX) fluorescence in the SKH1 HR hairless mouse for first fraction fluences below 5 J cm(-2) delivered 4 h after the application of ALA and 10 J cm(-2) delivered 2 h after the application of ALA. Illumination is performed using 514 nm at a fluence rate of 50 mW cm(-2). Reducing the fluence of the first fraction to 2.5 J cm(-2) does not result in significantly different visual skin damage. The PDT response, however, is significantly reduced if the fluence is lowered to 1 J cm(-2), but this illumination scheme (1 + 99 J cm(-2)) remains significantly more effective than a single illumination of 100 J cm(-2). A first light fraction of 10 J cm(-2) can be delivered 2 h earlier, 2 h after the application of ALA, without significant reduction in the PDT response compared with 5 + 95 J cm(-2) delivered 4 and 6 h after the application of ALA. The kinetics of PpIX fluorescence are consistent with those reported previously by us and do not explain the significant increase in PDT response with a two-fold illumination scheme. Histological sections of the illuminated volume showed a trend toward increasing extent and depth of necrosis for the two-fold illumination scheme in which the first light fraction is 5 J cm(-2), compared with a single illumination scheme.  相似文献   

2.
Light fractionation with dark periods of the order of hours has been shown to considerably increase the efficacy of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT). Recent investigations have suggested that this increase may be due to the resynthesis of protoporphyrin IX (PpIX) during the dark period following the first illumination that is then utilized in the second light fraction. We have investigated the kinetics of PpIX fluorescence and PDT-induced damage during PDT in the normal skin of the SKH1 HR hairless mouse. A single illumination (514 nm), with light fluences of 5, 10 and 50 J cm-2 was performed 4 h after the application of 20% ALA, to determine the effect of PDT on the synthesis of PpIX. Results show that the kinetics of PpIX fluorescence after illumination are dependent on the fluence delivered; the resynthesis of PpIX is progressively inhibited following fluences above 10 J cm-2. In order to determine the influence of the PpIX fluorescence intensity at the time of the second illumination on the visual skin damage, 5 + 95 and 50 + 50 J cm-2 (when significantly less PpIX fluorescence is present before the second illumination), were delivered with a dark interval of 2 h between light fractions. Each scheme was compared to illumination with 100 J cm-2 in a single fraction delivered 4 or 6 h after the application of ALA. As we have shown previously greater skin damage results when an equal light fluence is delivered in two fractions. However, significantly more damage results when 5 J cm-2 is delivered in the first light fraction. Also, delivering 5 J cm-2 at 5 mW cm-2 + 95 J cm-2 at 50 mW cm-2 results in a reduction in visual skin damage from that obtained with 5 + 95 J cm-2 at 50 mW cm-2. A similar reduction in damage is observed if 5 + 45 J cm-2 are delivered at 50 mW cm-2. PpIX photoproducts are formed during illumination and subsequently photobleached. PpIX photoproducts do not dissipate in the 2 h dark interval between illuminations.  相似文献   

3.
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.  相似文献   

4.
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illuminated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.  相似文献   

5.
Effective photodynamic therapy (PDT) depends on the optimization of factors such as drug dose, drug-light interval, fluence rate and total light dose (or fluence). In addition sufficient oxygen has to be present for the photochemical reaction to occur. Oxygen deficits may arise during PDT if the photochemical reaction consumes oxygen more rapidly than it can be replenished, and this could limit the efficacy of PDT. In this study we investigated the influence of the drug-light interval, illumination-fluence rate and total fluence on PDT efficacy for the photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). The effect of increasing the oxygenation status of tumors during PDT was also investigated. PDT response was assessed from tumor-growth delay and from cures for human malignant mesothelioma xenografts grown in nude mice. Tumor-bearing mice were injected intravenously with 0.15 or 0.3 mg.kg-1 mTHPC, and after intervals of 24-120 h, the subcutaneous tumors were illuminated with laser light (652 nm) at fluence rates of 20, 100 or 200 mW.cm-2. Tumor response was strongly dependent on the drug-light interval. Illumination at 24 h after photosensitization was always significantly more effective than illumination at 72 or 120 h. For a drug-light interval of 24 h the tumor response increased with total fluence, but for longer drug-light intervals even high total fluences failed to produce a significant delay in tumor regrowth. No fluence-rate dependence of PDT response was demonstrated in these studies. Nicotinamide injection and carbogen breathing significantly increased tumor oxygenation and increased the tumor response for PDT schedules with illumination at 24 h after photosensitizer injection.  相似文献   

6.
5-Aminolevulinic acid (ALA) is an attractive photosensitizing agent for photodynamic therapy (PDT) as its photoactive derivative, protoporphyrin IX, is metabolized within 1-2 days, eliminating prolonged skin photosensitivity. However, at the maximum dose patients can tolerate by mouth, 60 mg/kg, only superficial effects are seen. This paper extends earlier studies on enhancing the effect by light fractionation. Experiments in the normal rat colon looked at the area of necrosis around a single light delivery fiber 3 days after PDT with a range of light-dose fractionation regimes. All animals were given 200 mg/kg ALA intravenously 2 h prior to light delivery (100 mW at 635 nm) and each interruption in illumination was for 150 s. The area of PDT necrosis (total dose 25 J) could be increased by a factor of 3 with a single interval after 5 J, compared with continuous illumination. Alternatively, with this single break, the total light dose could be reduced by 60% to achieve the same area of necrosis as with continuous illumination. This simple modification to PDT with ALA could markedly reduce current treatment times as well as increasing clinical efficacy.  相似文献   

7.
The presence of phased protoporphyrin IX (PpIX) bleach kinetics has been shown to correlate with esophageal response to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) in animal models. Here we confirm the existence of phased PpIX photobleaching by increasing the temporal resolution of the fluorescence measurements using the therapeutic illumination and long wavelength fluorescence detection. Furthermore fluorescence differential pathlength spectroscopy (FDPS) was incorporated to provide information on the effects of PpIX and tissue oxygenation distribution on the PpIX bleach kinetics during illumination. ALA at a dose of 200 mg kg(-1) was orally administered to 15 rats, five rats served as control animals. PDT was performed at an in situ measured fluence rate of 75 mW cm(-2) using a total fluence of 54 J cm(-2). Forty-eight hours after PDT the esophagus was excised and histologically examined for PDT-induced damage. Fluence rate and PpIX photobleaching at 705 nm were monitored during therapeutic illumination with the same isotropic probe. A new method, FDPS, was used for superficial measurement on saturation, blood volume, scattering characteristics and PpIX fluorescence. Results showed two-phased PpIX photobleaching that was not related to a (systematic) change in esophageal oxygenation but was associated with an increase in average blood volume. PpIX fluorescence photobleaching measured using FDPS, in which fluorescence signals are only acquired from the superficial layers of the esophagus, showed lower rates of photobleaching and no distinct phases. No clear correlation between two-phased photobleaching and histologic tissue response was found. This study demonstrates the feasibility of measuring fluence rate, PpIX fluorescence and FDPS during PDT in the esophagus. We conclude that the spatial distribution of PpIX significantly influences the kinetics of photobleaching and that there is a complex interrelationship between the distribution of PpIX and the supply of oxygen to the illuminated tissue volume.  相似文献   

8.
Monitoring of relevant parameters during photodynamic therapy (PDT) and correlating these with treatment response is necessary to guarantee optimal and reproducible treatment outcome. In this paper we study the correlation between changes in the local tissue optical properties (absorption and scattering coefficients) during ALA-PDT and changes in PpIX fluorescence. The optical properties are measured extremely superficially by employing a single fiber for the delivery and collection of white light to and from the tissue. The measured reflectance spectrum is modeled in terms of four relevant parameters: blood saturation, relative blood volume fraction, scattering intensity and wavelength dependence of the scattering. All these parameters, except the relative blood volume fraction, are shown to correlate with the rate of photobleaching of PpIX, which in turn has previously been shown to correlate with the response of tissues to PDT. These results yield valuable insight in the behavior of these parameters during PDT and their suitability to predict PDT-response for other photosensitizers for which monitoring through photobleaching is not possible.  相似文献   

9.
The present study demonstrates the in vitro effect of hypericin-mediated PDT with fractionated light delivery. Cells were photosensitized with unequal light fractions separated by dark intervals (1 or 6 h). We compared the changes in viability, cell number, survival, apoptosis and cell cycle on HT-29 cells irradiated with a single light dose (12 J/cm(2)) to the fractionated light delivery (1 + 11 J/cm(2)) 24 and 48 h after photodynamic treatment. We found that a fractionated light regime with a longer dark period resulted in a decrease of hypericin cytotoxicity. Both cell number and survival were higher after light sensitization with a 6-h dark interval. DNA fragmentation occurred after a single light-dose application, but in contrast no apoptotic DNA formation was detected with a 6-h dark pause. After fractionation the percentage of cells in the G1 phase of the cell cycle was increased, while the proportion of cells in the G2 phase decreased as compared to a single light-dose application, i.e. both percentage of cells in the G1 and G2 phase of the cell cycle were near control levels. We presume that the longer dark interval after the irradiation of cells by first light dose makes them resistant to the effect of the second illumination. These findings confirm that the light application scheme together with other photodynamic protocol components is crucial for the photocytotoxicity of hypericin.  相似文献   

10.
Photodynamic therapy (PDT) can treat superficial, early‐stage disease with minimal damage to underlying tissues and without cumulative dose‐limiting toxicity. Treatment efficacy is affected by disease physiologic properties, but these properties are not routinely measured. We assessed diffuse reflectance spectroscopy (DRS) for the noninvasive, contact measurement of tissue hemoglobin oxygen saturation (StO2) and total hemoglobin concentration ([tHb]) in the premalignant or superficial microinvasive oral lesions of patients treated with 5‐aminolevulinic acid (ALA)‐PDT. Patients were enrolled on a Phase 1 study of ALA‐PDT that evaluated fluences of 50, 100, 150 or 200 J cm?2 delivered at 100 mW cm?2. To test the feasibility of incorporating DRS measurements within the illumination period, studies were performed in patients who received fractionated (two‐part) illumination that included a dark interval of 90–180 s. Using DRS, tissue oxygenation at different depths within the lesion could also be assessed. DRS could be performed concurrently with contact measurements of photosensitizer levels by fluorescence spectroscopy, but a separate noncontact fluorescence spectroscopy system provided continuous assessment of photobleaching during illumination to greater tissue depths. Results establish that the integration of DRS into PDT of early‐stage oral disease is feasible, and motivates further studies to evaluate its predictive and dosimetric value.  相似文献   

11.
5-aminolevulinic acid-based photodynamic therapy in leukemia cell HL60   总被引:8,自引:0,他引:8  
A study to explore the optimal experimental parameters and the photosensitization of 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) in promyelocytic leukemia cell HL60 has been conducted, in which HL60 cells and their control groups, peripheral blood mononuclear cell (PBMC), first are incubated with different concentrations of ALA in dark for different periods of time and then followed by irradiating with different wavebands for different fluences. Fluorescence microscope and spectrofluorometer have been used to detect the fluorescence of protoporphyrin IX (PpIX) endogenously produced by ALA. The response of the cells to ALA-PDT was evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2-5-diphenyl-2H-tetrazolium bromide (MTT) assay (interval between irradiation and the MTT assay is 24 h) and by flow cytometry (the length of time between irradiation and the flow assay is 30 min). MTT results will reflect the relative number of metabolically active mitochondria in the population. Propidium iodide uptake in flow cytometry will test for membrane damage. The results of parameter experiments were obtained: 1 x 10(5)/mL HL60 cell was first incubated with 1 mmol/L ALA in dark for 4 h and the maximum fluorescence of PpIX level appeared; then irradiated with 410 nm (4 mW/cm2) for 14.4 J/cm2 and maximum photodamage to membrane and mitochondrial function of HL60 cell resulted. With the normal granulocytes, such response was not detected. Therefore a hypothetical idea can be brought forward that ALA-based PDT can be used for inactivation of leukemia cell HL60 and these optimal parameters may be useful for clinical application.  相似文献   

12.
Evaluations of the efficiency of a new formulation of chlorin consisting of a complex of trisodium salt chlorin e6 (Ce6) and polyvinylpyrrolidone (PVP) in photodynamic therapy (PDT) and fluorescence diagnosis was performed on poorly differentiated human bladder carcinoma murine model with the following specific aims: (i) to qualitatively evaluate the fluorescence accumulation in human bladder tumor, (ii) to determine fluorescence distribution of Ce6-PVP using the tissue extraction technique and fluorescence imaging technique, (iii) to compare the fluorescence distribution of Ce6, Ce6-PVP and Photofrin in skin of nude mice, and (iv) to investigate phototoxicity caused by different parameters (drug-light interval, drug dose, irradiation fluence rate and total light fluence) in PDT. The fluorescence of the Ce6-PVP formulation was determined either by fluorescence imaging measurements or by chemical extraction from the tissues displaying similar trends of distribution. Our results demonstrated that the Ce6-PVP formulation possesses less in vivo phototoxic effect compared to Ce6 alone. The phototoxicity revealed a strong dependence on the drug and light dosimetry as well as on the drug-light interval. In PDT, the Ce6-PVP compound was most toxic at the 1h drug-light interval at 200J/cm(2), while Ce6 alone was most toxic at a light dose of more that 50J/cm(2) at the 1 and 3h drug-light interval. We also confirmed that Ce6-PVP has a faster clearance compared to Ce6 alone or Photofrin. This eliminates the need for long-term photosensitivity precautions. In conclusion, the Ce6-PVP formulation seems to be a promising photosensitizer for fluorescence imaging as well as for photodynamic treatment.  相似文献   

13.
Currently, the clinical use of 5-aminolaevulinic acid (ALA) induced protoporphyrin IX (PPIX) for photodynamic therapy (PDT) is limited by the maximum tolerated oral ALA dose (60 mg/kg). Attempts have been made to enhance this treatment modality without increasing the administered dose of ALA. One way to do this is through light dose fractionation, where the irradiation is interrupted at a particular point for a short period of time. This can produce up to three times more necrosis than with the same light dose delivered without a break. An oxygen microelectrode was employed to study the effect of continuous and fractionated light regimes on the level of oxygen in the colon of normal Wistar rats during ALA PDT. A rapid decline in pO2 occurred close to the irradiation fibre as soon as the light dose commenced. With the fractionated regime, a partial recovery in pO2 was observed during the dark interval which was reversed soon after the second light fraction commenced. We have shown that the level of tissue oxygen at the treatment site is affected differently when the light dose is fractionated, than when continuous illumination is employed. This factor may at least partially explain the difference in outcome of these two treatment regimes. Further, oxygen measurements might prove to be a useful way of monitoring PDT treatments if they can predict whether tissue is likely to be viable following treatment.  相似文献   

14.
Experimental therapies for Barrett's esophagus, such as 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), aim to ablate the premalignant Barrett's epithelium. However, the reproducibility of the effects should be improved to optimize treatment. Accurate irradiation with light of a proper wavelength (633 nm), fluence and fluence rate has shown to be critical for successful ALA-PDT. Here, we have used in situ light dosimetry to adjust the fluence rate measured within the esophagus for individual animals and monitored protoporphyrin IX (PpIX) fluorescence photobleaching simultaneously. Rats were administered 200 mg kg-1 ALA (n = 14) or served as control (n = 7). Animals were irradiated with an in situ measured fluence rate of 75 mW cm-2 and a fluence of 54 J cm-2. However, this more accurate method of light dosimetry did not decrease the variation in tissue response. Large differences were also observed in the dynamics of PpIX fluorescence photobleaching in animals that received the same measured illumination parameters. We found that higher PpIX fluorescence photobleaching rates corresponded with more epithelial damage, whereas lower rates corresponded with no response. A two-phased decay in PpIX fluorescence could be identified in the response group, with a rapid initial phase followed by a slower rate of photobleaching. Non-responders did not show the rapid initial decay and had a significantly lower rate of photobleaching during the second phase of the decay (P = 0.012).  相似文献   

15.
Fluorescence spectra, fluorescence decay kinetics, photobleaching kinetics and photodynamic efficacy of protoporphyrin IX (PP) were investigated in endothelial cells in vitro after different incubation times. Fluorescence spectra and photobleaching kinetics were determined during total internal reflection (TIR) illumination or epiillumination. Because penetration depth of the excitation light during TIR illumination was limited to about 100 nm, plasma membrane-associated PP was almost selectively examined. Spectra obtained by TIR fluorescence spectroscopy (FS) showed a very low background, where-as spectra obtained by epi-illumination exhibited considerable background by autofluorescence and scattered light. For photobleaching kinetics during TIR illumination after 1 h or 24 h incubation, a biexponential fluorescence decrease was observed with a rapidly and a slowly bleaching portion. After 1 h incubation, the rapidly bleaching portion was the predominant fraction, whereas after 24 h incubation comparable relative amounts of the rapidly and slowly bleaching portion were determined. The rapidly and slowly bleaching portion were assigned to PP monomers and aggregated species in close vicinity to the plasma membrane. Fluorescence decay measurements after epi-illumination support the decrease of PP monomers within the whole cell with increasing incubation time. In contrast to TIR illumination, photobleaching of PP during epi-illumination was characterized by slow monoexponential fluorescence decrease after 1 h or 24 h incubation. Photodynamic efficacy of PP using epi-illumination was found to depend strongly on incubation time. Considerable cell inactivation was determined for short incubation times (1 h or 3 h), whereas photodynamic efficacy was diminished for longer incubation times. Reduced photodynamic efficacy after long incubation times was assigned to the lower amount of photodynamically active monomers determined close to the plasma membrane as well as within the whole cell. In conclusion, TIRFS measurements are suggested to be an appropriate tool for the examination of the plasma membrane-associated photosensitizer fraction in living cells.  相似文献   

16.
Abstract— Photodynamic therapy (PDT) is an efficient inducer of apoptosis, an active form of cell death that can be inhibited by the BCL-2 oncoprotein. The ability of BCL-2 to modulate PDT-induced apoptosis and overall cell killing has been studied in a pair of Chinese hamster ovary cell lines that differ from one another by a transfected human BCL-2 gene in one of them (Bissonnette et al., Nature 359,552–554, 1992). Cells were exposed to the phthalo-cyanine photosensitizer Pc 4 and various fluences of red light. Pc 4 uptake was identical in the two cell lines. The parental cells displayed a high incidence of apoptosis after PDT, whereas at each fluence there was a much lower incidence of apoptosis in the BCL-2-expressing cells. Apoptosis was monitored by (a) observation of 50 kbp and oligonucleosome-size DNA fragments by gel electrophoresis, (b) flow cytometry of cells labeled with fluores-cently tagged dUTP by terminal deoxynucleotidyl transferase and (c) fluorescence microscopy of acridine orange-stained cells. The time course of apoptosis varied with the PDT dose, suggesting that only after moderately high doses (> 99% loss of clonogenicity) was there a relatively synchronous and rapid entry of many cells into apoptosis. At PDT doses reducing cell survival by 90 or 99%, significant increases in apoptotic cells were found in the population after6–12 h. Clonogenic assays showed that BCL-2 protein inhibited not only apoptosis but overall cell killing as well, effecting a two-fold resistance at the 10% survival level. Thus, BCL-2 -expressing cells may be relatively resistant to PDT.  相似文献   

17.
Photodynamic therapy (PDT) may cause tumour cell destruction by direct toxicity or by inducing microcirculatory shutdown. Protoporphyrin IX generated from 5-aminolevulinic acid (ALA) has been widely used as an endogenous photosensitiser in PDT. However, the hydrophilic nature of the ALA molecule limits its penetration through the stratum corneum of the skin and cell membranes and thus, ALA alkyl-esters have been developed to improve ALA permeation.The aim of this work was to study Protoporphyrin IX synthesis from ALA and its derivatives ALA methyl ester (Me-ALA) and ALA hexyl ester (He-ALA) in the microvascular endothelial cell line HMEC-1 derived from normal skin, and to evaluate their response to PDT.We found that lower light doses are required to photosensitise HMEC-1 endothelial cells than to photosensitise PAM212 transformed keratinocytes, showing some possible selectivity of ALA-PDT for vascularisation in skin.Employed at concentrations leading to equal Protoporphyrin IX synthesis, ALA, He-ALA and Me-ALA presented the same efficacy of HMEC-1 photosensitisation. However, He-ALA was a promising compound for the use in the enhancement of Protoporphyrin IX in HMEC-1 cells employed at low concentrations at both short and long time exposures whereas Me-ALA should be employed at high concentrations and longer time periods in order to surpass the Protoporphyrin IX levels obtained with ALA. The advantage of Me-ALA over ALA was based on its lower dark toxicity.This is the first work to report vascular cell photosensitisation employing alkyl-esters of ALA, and we demonstrated that these derivatives could exert the same effect as ALA and under certain conditions enhance photosensitisation of vasculature.  相似文献   

18.
We have previously shown that the efficacy of photodynamic therapy (PDT) using the photosensitizer meso-tetra-hydroxyphenyl-chlorin (mTHPC) correlated with plasma drug levels at the time of illumination rather than drug levels in human tumor xenografts or mouse skin. These results suggested that vascular-mediated effects could be important determinants of PDT response in vivo. In the present study we further investigated the relationship between PDT response, mTHPC pharmacokinetics and the localization and extent of vascular damage induced in human squamous cell carcinoma xenografts (HNXOE). Plasma levels of mTHPC decreased exponentially with time after injection, whereas tumor drug levels remained maximal for at least 48 h. At 3 h after administration mTHPC was localized in the blood vessels, whereas at later times it was distributed throughout the whole tumor. Illumination at 3 h after mTHPC, which resulted in 100% long-term tumor cure, led to a marked reduction of vascular perfusion and increased tumor hypoxia at 1 h after treatment. Illumination at 48 h resulted in rapid regrowth of most tumors and only 10% cure. This protocol did not affect a significant decrease in vascular perfusion or increase in tumor hypoxia. These data show that optimal responses to mTHPC-mediated PDT were primarily dependent on the early vascular response, and that plasma drug levels at the time of illumination could predict this relationship.  相似文献   

19.
In order to apply photodynamic therapy (PDT) to pigmented melanoma, the efficacy of PDT mediated by pheophorbide alpha from silkworm excreta (SPbalpha) and commercial Photofrin against B16F10 melanoma was comparatively studied from the in vivo assay using C57BL/6J mice. From in vitro PDT assay, the proliferation of B16F10 cells treated with SPbalpha (more than 0.5 microg/ml) and light illumination (1.2 J/cm2) were significantly inhibited with the necrotic response. This indicated that the photocytotoxicity of SPbalpha (665 nm) was not influenced by melanin from melanoma. From the assessment of the in vivo photosensitizing activity, the tumor growth was further delayed in groups treated with SPbalpha/PDT compared to that treated with Photofrin /PDT. The survival rate of tumor bearing mice treated with SPbalpha/PDT was closely associated with its photosensitizing effect. In addition, the photosensitizing effect of SPbalpha/PDT showed a dose dependent tendency in light illumination. These results demonstrated that B16F10 melanoma cells were significantly photosensitized by SPbalpha/PDT, regardless of the influence of melanin from melanoma, and SPbalpha/PDT at very low drug dose (1 mg/kg) and light dose (1.2 J/cm2) showed the photosensitizing efficacy surpassing Photofrin against B16F10 melanoma in mice system.  相似文献   

20.
Predicting the therapeutic outcome of photodynamic therapy (PDT) requires knowledge of the amount of cytoxic species generated. An implicit approach to assessing PDT efficacy has been proposed where changes in photosensitizer (PS) fluorescence during treatment are used to predict treatment outcome. To investigate this, in vitro experiments were performed in which Mat-LyLu cells were incubated in meta-tetra(hydroxyphenyl)chlorin (mTHPC) and then irradiated with 652 nm light. PS concentration, fluence rate and oxygenation were independently controlled and monitored during the treatment. Fluorescence of mTHPC was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony-formation assay. Singlet oxygen dose was calculated using four different models and was compared with cell survival. For the dose metric based on singlet oxygen-mediated PS photobleaching, a universal relationship between cell survival and singlet oxygen dose was found for all treatment parameters. Analysis of the concentration dependence of bleaching suggests that the lifetime of singlet oxygen within the cell is 0.05-0.25 micros. Generation of about 9 x 10(8) molecules of singlet oxygen per cell reduces the surviving fraction by 1/e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号