首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
通过离子交换法制得Cu/SAPO-34菱沸石分子筛催化剂,同时研究了NH3和NOx(NO和NO2)在该催化剂上的吸附位、吸附强度、吸附量和吸附速率,得到了不同反应气氛在Cu/SAPO-34上的吸附性能及其在NH3选择性催化还原(NH3-SCR)反应中的作用.研究采用瞬态实验、程序升温脱附(TPD)和漫反射傅里叶变换红外光谱(DRIFTS)等方法进行表征实验.瞬态实验结果表明NH3是吸附性气体.程序升温脱附实验和红外漫反射实验结果表明NH3可以吸附在布朗斯特和路易斯酸性位上形成不同的NH3物种,它们显示不同的SCR活性.NH3在Cu2+上的吸附速率最快,且键强最强.NOx可以氧化并以硝酸盐/亚硝酸盐的形式吸附在CU物种上.最后,本文讨论了NH3选择性催化还原反应过程中在Cu物种上的中间物种并推测反应机理.  相似文献   

2.
主要考察了NO2对Cu/SAPO-34分子筛催化剂在整个温度范围内(100-500°C)NH3选择性催化还原(SCR)NO性能的影响.研究所使用样品为新鲜Cu/SAPO-34催化剂在750°C下水热处理4 h的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化.活性评价实验结果表明,NO2会抑制催化剂的低温(100-280°C)活性,但其存在会提高催化剂的高温(280°C以上)活性.与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N2O)的浓度增大.动力学结果表明,Cu/SAPO-34催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ?mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ?mol-1)更大.In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Br?nsted酸性位上的NH3物种反应生成NH4NO3.低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

3.
主要考察了NO2对Cu/SAPO-34 分子筛催化剂在整个温度范围内(100-500 ℃)NH3选择性催化还原(SCR)NO性能的影响. 研究所使用样品为新鲜Cu/SAPO-34 催化剂在750 ℃下水热处理4 h 的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化. 活性评价实验结果表明,NO2会抑制催化剂的低温(100-280 ℃)活性,但其存在会提高催化剂的高温(280 ℃以上)活性. 与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N22O)的浓度增大. 动力学结果表明,Cu/SAPO-34 催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ·mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ·mol-1)更大. In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Brønsted 酸性位上的NH3物种反应生成NH4NO3. 低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

4.
CO催化还原NO是发生在汽车尾气净化催化剂中的一个重要化学反应.CeO2容易发生氧化还原反应CeO2?CeO2?x+(x/2)O2而具有氧储存/释放作用,可以有效地促进CO氧化,因而CeO2作为储氧材料和催化助剂被广泛应用于汽车催化剂中.在过渡金属元素中,铑对NO的解离活性最高,是目前汽车三效催化剂中最为重要的还原性活性组分.目前,有关Rh-CeO2基催化剂表面CO还原NO的文献仅关注催化反应活性和N2O选择性,对CO还原NO反应机理的理解还不够深入准确,无法为轻型汽油车NH3排放控制提供正确有用的理论基础.NH3排放至大气中会以NH4+形式与SO42?和NO3?离子结合,导致二次颗粒物污染,因此,研究CO还原NO反应中NH3生成机理对轻型汽油车NH3排放控制具有非常重要的理论意义.我们研究组强调了CO催化还原NO反应的表面羟基介导NH3生成问题,并通过原位漫反射傅里叶变换红外光谱(in-situ DRIFTS),傅里叶变换红外光谱(FT-IR),程序升温还原/氧化(TPR/TPO)等现代分析表征技术深入研究了CO还原NO反应机理,并首次提出了催化剂表面"羟基脱氢"反应的NH3生成机理.研究发现,Rh-CeO2催化剂表面CO还原NO反应的NH3选择性最高可达9.7%,其反应表观活化能仅为36 kJ/mol,in-situ DRIFTS,FT-IR和NO-TPO测试结果表明,NH3的生成可归因于催化剂表面"羟基脱氢"反应,即CO与催化剂表面端位羟基和桥式羟基发生"水煤气转化"反应生成H2,反应产生的H2还原NO生成NH3;CeO2中非骨架铈双羟基化形成的类氢氧化铈物种则会直接与NO发生脱氢反应生成NH3,但需要更高的反应温度.值得注意的是,当反应气中额外通入5%水蒸气时,其反应表观活化能提高了21 kJ/mol(同比增加58.3%),更重要的是NH3选择性明显提高,最高可达25.3%(同比增加160.8%),FT-IR测试结果表明,这是由于水蒸气作用促使催化剂表面羟基化,表面活性氢源得以不断补充.这从动力学角度促进了端位羟基和桥式羟基的"水煤气转化"反应而提高NH3选择性.同时,对比NO/H2,CO/NO和CO/NO/H2O反应的NH3生成浓度,我们还发现,H2O分子与NO的竞争吸附会抑制未解离吸附的NH3进一步还原NO,减少反应生成NH3的消耗,促使更多生成的NH3从催化剂表面脱附至气相中,这也是水蒸气导致NH3选择性明显增加的重要原因.以上结果清晰地表明了催化剂表面"羟基脱氢"作用和水蒸气分子与NO的竞争吸附行为对CO还原NO反应中NH3生成的重要影响.  相似文献   

5.
采用六亚甲基亚胺(HMI)为模板剂,合成了新型SAPO-35分子筛,研究发现SAPO-35的酸性随着硅铝摩尔比增加[n(SiO_2)/n(Al_2O_3)=0.3,0.5,0.7]呈现先增加后降低的趋势,当n(Si)/n(Al)=0.7时,部分Si将发生SM3取代,进而降低SAPO-35酸量.进一步采用旋转浸渍法和离子交换法对SAPO-35进行改性,制得Cu/SAPO-35催化剂,并研究了其催化氨气选择性还原(NH3-SCR)反应的性能.催化剂表征结果表明,Cu主要以Cu~(2+)离子形式存在于离子交换法制备的Cu/SAPO-35中,因此其NH3-SCR催化性能更优良.基于液相离子交换法,进一步研究了不同硅铝比[n(SiO_2)/n(Al_2O_3)=0.3,0.5,0.7]SAPO-35原粉酸性对所制备Cu/SAPO-35催化剂NH_3-SCR反应活性的影响,结果表明,分子筛原粉强酸量越大,制得的Cu基催化剂中Cu~(2+)离子含量越高,从而催化剂的SCR活性、N_2选择性更优.  相似文献   

6.
氮氧化物(NO_x)的控制是当前环境催化领域研究的热点.氢气选择性催化还原NO_x (H_2-SCR)近年来引起研究者的高度关注.在H_2-SCR反应中, NO_x可在较低的温度(100–300°C)下被还原,并且过量氢气会与氧气反应生成水,不会导致二次污染.研究表明, Pd基催化剂在H_2-SCR反应中具有良好的活性,并且其催化活性与Pd的化学价态密切相关, Pd~0较Pd2+具有更高的催化活性.鉴于Pd的化学价态与催化剂的制备方法密切相关,本文通过浸渍法、沉积–沉淀法和聚乙二醇还原法分别制备了Pd/TiO_2 (IM)、Pd/TiO_2 (DP)和Pd/TiO_2 (PR)催化剂,研究了不同方法制得的Pd/TiO_2催化剂对H_2-SCR的催化性能.实验结果表明,与Pd/TiO_2 (IM)和Pd/TiO_2 (DP)相比, Pd/TiO_2 (PR)催化剂的催化活性明显提高,并且温度窗口显著拓宽.为了揭示Pd/TiO_2 (PR)催化剂具有高活性的原因,对Pd/TiO_2 (IM)、Pd/TiO_2 (DP)和Pd/TiO_2 (PR)催化剂进行了一系列分析表征.XRD分析表明,在三种不同方法制备的Pd/TiO_2催化剂上,活性组分Pd高度分散在TiO_2表面.TEM结果也证实了Pd高度分散在TiO_2表面,并且在Pd/TiO_2 (PR)催化剂上, Pd颗粒粒径(1.02 nm)最小,这可能是Pd/TiO_2 (PR)催化剂具有高活性的原因之一.XPS分析表明,在Pd/TiO_2 (IM)和Pd/TiO_2 (DP)催化剂中, Pd主要以Pd2+的形式存在;而在Pd/TiO_2 (PR)中, Pd则以Pd~0的形式存在,高分散的Pd~0有利于H_2-SCR反应的进行.同时, Pd/TiO_2 (PR)中表面吸附氧(Oα)含量明显高于Pd/TiO_2 (IM)和Pd/TiO_2 (DP),较高含量的Oα能有效促进NO_x的吸附与活化,从而促进NO_x还原反应的进行.通过原位漫反射红外光谱(In-situDRIFTS)分析发现,与Pd/TiO_2 (IM)催化剂上NO+O_2稳态吸附的光谱相比, Pd/TiO_2(PR)催化剂上螯合亚硝酸根和单齿亚硝酸根的特征峰明显增强.同时观测到Pd~0上吸附的单齿亚硝酰基特征峰,由此进一步证实在Pd/TiO_2 (PR)催化剂中Pd以Pd~0的形式存在.NO+O_2→H_2 (或H_2+O_2)→NO+O_2瞬态吸附研究表明, Pd/TiO_2 (PR)催化剂上吸附的NO_x具有高的反应活性,并且吸附态NO_x和H_2(或H_2+O_2)反应可生成中间产物NH3, NH3可进一步与NO_x反应.Pd/TiO_2 (PR)催化剂上高分散的Pd~0以及在反应条件下表面生成的更多螯合亚硝酸根和单齿亚硝酸根反应中间体是其具有高H_2-SCR催化性能的主要原因.  相似文献   

7.
采用浸渍法制备了一系列不同铜含量的Cu/SAPO-34催化剂,考察了该系列催化剂上NH_3选择性催化氧化反应性能(NH_3-SCO)。实验结果表明,10%-Cu/SAPO-34催化剂在300℃温度下具有100%的NH_3去除率,且其氮气选择性大于90%。与此同时,通过XRD、BET、UV-vis、H_2-TPR和XPS等表征分析结果表明,高度分散的CuO是Cu/SAPO-34催化剂的主要活性组分。对10%-Cu/SAPO-34催化剂进行水热处理后,催化剂低温活性明显提高,催化剂的N_2选择性在325℃急剧下降。这是由于水热处理导致一定数量的铜物种发生迁移并且形成了更稳定的铜物种引起。SAPO-34的骨架结构遭到一定程度的破坏。  相似文献   

8.
采用浸渍法制备了系列铜锰复合氧化物分子筛催化剂(Cu-Mn/SAPO-34),在固定床反应器上考察不同Cu/Mn质量比对分子筛催化剂选择催化还原NO的影响,利用XRD、NH_3-TPD、H_2-TPR、XPS等手段对催化剂进行了表征分析。结果表明,双金属改性的Cu-Mn/SAPO-34催化剂在NH_3-SCR反应中表现出较为优异的催化活性,具有较宽的活性温度窗口。当Cu/Mn质量比为1∶4时,催化剂具有最宽的活性温度窗口,NO_x转化率在250℃已达到85.39%,在300-400℃转化率均达到96%以上,450℃时仍能达到90%。铜和锰物种高度分散于催化剂表面,未改变SAPO-34的晶体结构,且构成协同作用。Cu-Mn共同负载促进了Cu~(2+)向Cu~+的转变,增加了高价态Mn~(4+)和Mn~(3+)的比例,有利于提高低温活性,促进催化反应的进行。Cu-Mn/SAPO-34/1∶4具备丰富的酸性位、良好的氧化还原性能和抗SO_2/H_2O性能,该配比有助于催化剂的催化活性和稳定性的提高。  相似文献   

9.
采用水热合成方法制备含锰的SAPO-34分子筛(MnSAPO-34)催化剂,考察了锰投加量、焙烧温度及晶化时间对催化剂氨选择性催化还原(SCR)氮氧化物反应活性的影响,并通过X射线光电子能谱(XPS)、程序升温还原(TPR)、程序升温脱附(TPD)等多种分析手段对催化剂进行表征.活性测试结果表明,当MnO与P2O5的摩尔比n(MnO)/n(P2O5)= 0.1,采用6 h晶化时间, 550 ℃焙烧制备的MnSAPO-34分子筛具有最佳SCR活性, NOx转化率接近100%, N2选择性高于80%.分析结果表明, Mn的引入对分子筛的晶体及多孔结构有较大影响,过多的引入会降低结晶度及产生非骨架锰氧化物,同时还会降低分子筛的比表面积和孔容,但焙烧温度的降低以及晶化时间的缩短可以提高分子筛的比表面积和孔容.高温焙烧后分子筛表面出现了高氧化态锰物种,以Mn4+为主,而提高Mn3+的比例则有利于提高催化活性.在适当的合成条件下, Mn的引入可增强分子筛对NO和NH3分子的吸附,而强吸附态NO及强吸附态NH3的相互作用可能是催化活性快速提高的原因.  相似文献   

10.
分别采用浸渍法、柠檬酸络合法以及沉淀法在SAPO-11分子筛上负载MnOx,制备了一系列MnOx/SAPO-11催化剂。考察了催化剂的低温NH3选择性催化还原(SCR) (NH3-SCR) NOx的性能。结果表明,沉淀法制备的负载量为20%(w)的MnOx/SAPO-11催化剂表现出最优异的低温NH3-SCR性能及N2选择性。通过X射线衍射(XRD)、扫描电镜(SEM)、能量散射谱(EDS)、原子吸收光谱(AAS)、N2吸附-脱附、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)、NH3程序升温脱附(NH3-TPD)以及NO/O2程序升温脱附-质谱(NO/O2-TPD-MS)等多种表征手段对催化剂的结构及表面性质进行分析。表征结果显示,采用不同方法制备催化剂时,其表面MnOx的存在形式和晶相结构不同。沉淀法制备的催化剂表面存在无定型态MnOx以及MnO2晶型,具有较大的介孔及外表面积、更多比例的Mn4+和化学吸附氧,同时表面存在对反应有利的中强酸以及强酸。因此,催化剂在低温SCR反应阶段能够生成重要中间产物NO2,从而表现出最佳低温活性。同时,三种制备方法均能使MnOx相对均匀分散在SAPO-11表面。SAPO-11对催化剂表面MnOx物种的形成具有一定的影响,从而影响催化剂的酸性,拓宽了MnOx的活性温度窗口,提高了催化剂的N2选择性。  相似文献   

11.
为替代传统的贵金属基NOx储存还原(NSR)催化剂,本文设计并制备了不含贵金属的BaFeO3-x+Cu-ZSM-5 耦合催化剂,用于催化消除稀燃发动机尾气中的NOx. 在稀燃阶段,NO在BaFeO3-x催化剂上发生了氧化和储存反应;在富燃阶段,从BaFeO3-x催化剂中脱附出来未能消除的NOx被置于其后的Cu-ZSM-5催化剂进一步催化消除. 实验结果表明,BaFeO3-x+Cu-ZSM-5 耦合催化剂的工作温度窗口被拓宽到250-400 ℃,同时NOx消除性能得到了显著提高:NOx转化率最高可达98%,N2选择性接近100%.  相似文献   

12.
贤晖  马爱静  孟明  李新刚 《物理化学学报》2013,29(11):2437-2443
采用溶胶-凝胶法制备了La0.7Sr0.3Co0.8Fe0.2O3钙钛矿催化剂,考察了还原剂种类(CO,C3H6,H2)对催化剂在氮氧化物储存还原(NSR)循环前后的氮氧化物储存量(NSC)和NO-to-NO2转化率的影响.O2程序升温脱附(O2-TPD)实验结果表明,CO还原后的钙钛矿催化剂上形成了较多的氧空位,而氧空位则是一种有效的NOx储存活性中心.活性测试和傅里叶红外变换(FTIR)光谱表征结果显示:在NSR循环中,以CO为还原剂时催化剂显示了最佳的氮氧化物(NOx)储存效果.进一步的研究结果显示,当采用CO作为还原剂时,经过三次NSR循环后,催化剂中出现了Sr3Fe2O7新物相,而该物相可能具有比La0.7Sr0.3Co0.8Fe0.2O3钙钛矿更佳的NOx储存性能.综上所述,CO作为还原剂时可能使钙钛矿催化剂产生更多的氧空位以及更易于储存NOx的Sr3Fe2O7物相,这些原因使其NOx储存性能得到了大幅度改善.  相似文献   

13.
采用等体积浸渍法制备系列Mn-Mo-W-O_x/堇青石和Mn-Mo-W-O_x/TiO_2催化剂,用于选择性催化还原NO.通过Mn、Mo、W 3种元素不同配比对催化剂配伍进行优化,确立Mn-Mo-W-O_x最佳配比.采用XRD、N_2-BET、PyIR、SEM以及XPS等表征分析催化剂的固相结构、比表面积、酸量、表面形貌和表面元素.结果表明:当Mn/Mo/W元素摩尔比为10∶0.5∶1,载体为TiO_2时,催化剂的催化性能最优.适量Mo掺入Mn-W-O_x催化剂可以增大其比表面积,提高催化剂表面L酸酸量以及Mn~(4+)离子浓度,从而有效提高了催化剂高温活性.载体替换为TiO_2时催化剂的比表面积和酸量明显提高,从而增强了催化剂的脱硝性能.  相似文献   

14.
A recent experimental determination[1] of the dissociation energies (D0) for H2N-H, H2N+-H and H2N-H+, the ionization energies for NH3 and NH2 resulted in large deviations when compared with those of the earlier values and the QCISD(T)/6-311+G(3df,2p) ab initio calculations. We have performed some higher level ab initio calculations on these data by utilizing the Gaussian 92/DFT and Gaussian 94 pakages of programs and have assessed the available experimental values. Our calculations were carried out at the QCISD (TQ)/aug-cc-pVDZ, G2(QCI), QCISD(T)/6-311 ++G(3df,3pd) and QCISD(T)/aug-cc-pVTZ levels of theory. Geometries were optimized at both of the MP2(full)/6-31G(d) and the MP2(full)/6-31(d,p) levels, and were compared with those of the experiments if available. The MP2(full)/6-31G(d,p) tight-optimized geometries for the neutrals are closer to those of the experiments than those of the MP2 (full)/6-31G(d), and are in excellent agreement with the experimental results as shown in Table 1. In this case, we assumed that the optimized geometries for the cations would be better if p polarization functions are added to the hydrogen atoms. We firstly noted that the symmetry of the NH3+ cation was D3h, other than Cs. as reported in ref.[1]. All of the zero-point energies and the final geometries are calculated at the MP2(full)/6-31G(d,p) level of theory. We have also repeated the QCISD(T )/6-311 + G(3df,2p) calculations of ref. [1], because we could not identify their level of goemetry optimization. It is found that the total energy, -55.244 19 Hartrees, for NH2+(1A1 ) in ref.[1] might be in error. Our result is -55.336 29 Hartrees at the same level of theory. At our highest level [QCISD(T)/aug-cc-pVTZ] of calculations as shown in Table 3, the D0 (temperature at zero Kelvin) values of H2N-H, H2N+-H(3B1for NH2+ ) and H2N- H+ are 4.51, 5.49 and 8.00 eV, respectively. These data reported in re f.[1] were 4.97, 5.59 and 8.41 eV, respectively. Our result on D0(H2N-H) supports the work of ref.[2,3,5,6]. The ionization energies (IE) for NH3 and NH2 (3B1 for NH2+) at our highest level are 10.11 and 11.09 eV while in ref.[1] were 10.16 and 10.78 eV, respectively. For the latter, our result supports the experiment of ref.[3]. Our predicted D0 for HN2+-H and IE for NH2 (1A1 for each NH2+) are 6.80 and 12.39 eV, respectively. These values differ greatly from the predicted values (9.29 and 14.88 eV) of ref.[1] where the total energy of NH2+(1A1) might be in error. The D0 value for HN-H has not been found in ref.[1]. Our result supports the work of ref.[3]. We have also derived all of these values at the temperature of 298K and under the pressure of 101kPa at several levels of thoery as shown in Table 3. On examining the experiment of ref.[1] in detail, it is easy to find that all of the larger deviations might be from a too high value of the appearance potential of proton AP(H+). Indeed, ref.[1] has mentioned that the determintion of AP(H+), due to kinetic shift, would lead to a hihger value for the dissociation energy as has been pointed out by Berkowitz and Ruscic. In this work, we concluded that, besides some mistakes in the theoretical calculations of ref.[1], the dissociation energies for H2N-H and H2N-H+,the IE for NH2 (3B1 for NH2+) might also be unreliable and need to be re-examined.
  相似文献   

15.
Tao Lin 《Acta Physico》2008,24(7):1127-1131
Monolith catalysts were prepared using TiO2 and ZrO2-TiO2 as supports with MnO2 as active component and Fe2O3 as promoter. The catalytic activities at low temperature and stability at high temperature for selective catalytic reduction of NOx with NH3 (NH3-SCR) in the presence of excessive O2 were studied after the catalysts calcined at different temperatures. The catalysts were characterized by X-ray diffraction (XRD), specific surface area measurements (BET), oxygen storage capacity (OSC), and temperature programmed reduction (H2-TPR). The results indicated that the catalyst supported on ZrO2-TiO2 had excellent stability at high temperature, and possessed high specific surface area and oxygen storage capacity, and had strong redox property. The results of the catalytic activities indicated that the monolith manganese-based catalyst using ZrO2-TiO2 as support had evidently improved the activity of NH3-SCR reduction reaction at low temperature, and it showed great potential for practical application.  相似文献   

16.
包卓然  崔艳喜  孙鹏  孙琪  石雷 《物理化学学报》2013,29(11):2444-2450
对丙三醇和苯胺在Co或Ni促进的Cu/SiO2-Al2O3催化剂上气相合成3-甲基吲哚进行了研究.采用N2吸附、氢气程序升温还原(H2-TPR)、电感耦合等离子体(ICP)发射光谱、X射线衍射(XRD)、透射电子显微镜(TEM)、氨程序升温脱附(NH3-TPD)及热重(TG)分析等技术对催化剂进行了表征.结果表明,向Cu/SiO2-Al2O3催化剂加入钴或镍助剂改善了催化剂的催化性能,钴比镍更加有效.在催化剂Cu-Co/SiO2-Al2O3和Cu-Ni/SiO2-Al2O3上,反应第3 h,3-甲基吲哚收率分别达到47%和45%,而且催化剂经过6次再生收率仍能达到44%和42%.各种表征表明,向Cu/SiO2-Al2O3催化剂加入钴或镍助剂能增强铜和载体之间的相互作用,其结果不仅促进了铜粒子在载体表面的分散度,而且有效减少了反应过程中铜组分的流失.另外,加入钴或镍助剂还能减少催化剂的中强酸中心数,从而提高3-甲基吲哚的选择性,并且抑制积炭的形成.此外,钴助剂还能增加催化剂的弱酸中心数,促进3-甲基吲哚的生成.提出了金属铜与弱酸中心共同促进3-甲基吲哚合成的催化反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号