首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
以典型的Aa-Bb型缩聚反应为例, 应用统计力学和热力学的基本原理对反应体系的一些平衡特征进行研究. 基于从两种不同角度所构造的正则配分函数, 导出反应体系的平衡自由能以及质量作用定律的解析形式, 同时指出获得数量分布函数的新方法, 并通过计算反应体系的等温压缩系数从而得到反应体系的凝胶化条件. 进一步利用数量分布函数的不变性, 给出临界点后溶胶相和凝胶相的平衡自由能, 探讨了溶胶-凝胶相变的相关问题.  相似文献   

2.
应用统计力学原理, 从两种不同角度对ABg型超支化反应体系中的平衡特征进行研究, 得到该体系平衡自由能以及反应程度与热力学量之间关系的解析表达式. 进一步指出获得超支化高分子数量分布函数的两种新方法, 并结合改进的高分子格子流体理论探讨了聚合反应对体系状态方程的影响.  相似文献   

3.
溶液法星型聚乳酸的合成与表征   总被引:1,自引:0,他引:1  
探讨了采用辛酸亚锡为催化剂,多元醇及多元酸为引发剂,以溶液法制备星型聚乳酸的可行性,研究了不同引发剂对产物分子量的影响.采用核磁共振及DSC对产物进行了表征,结果表明:以溶液法合成星型聚乳酸是可行的,但与丙交酯开环聚合制备星型聚乳酸的方法相比,溶液法在产物结构和分子量控制上并不十分有效,由于反应受到多官能团核引发剂空间位阻和反应概率的影响,聚乳酸产物的结构除星型结构外也同时存在大量的线型结构.  相似文献   

4.
ATRP与点击化学结合制备树状星型聚合物   总被引:2,自引:0,他引:2  
本文通过将ATRP技术和点击化学相结合的方法来制备树状星型聚合物[(PMMA)2PSt]4. 首先通过1,3-偶极环加成反应对ATRP的核预聚物进行端基修饰, 得到后继ATRP反应的大分子引发剂, 进而引发第二单体的ATRP聚合生成树状星型聚合物.  相似文献   

5.
应用统计力学原理对二元自缩合乙烯基聚合反应体系(由单体和引发单体组成)的统计热力学特征予以研究.首先从两种不同的角度给出与聚合反应相应的配分函数,据此得到反应体系的平衡自由能、质量作用定律以及超支化高分子的数量分布函数,进而计算了体系的比热和等温压缩系数等热力学量.进一步研究了超支化高分子的空间尺度,给出反应体系k次均方回转半径的递推公式,计算了各种不同溶剂条件下的均方回转半径,指出引发单体分数、反应程度和溶剂效应对超支化高分子空间尺度的影响.  相似文献   

6.
借助于超声波振荡分散法,通过苯乙烯-二乙烯基苯-对氯甲基苯乙烯三元共聚合反应合成了可溶性聚苯乙烯微凝胶,用二乙基二硫代氨基甲酸钠(铜试剂)取代其中的氯原子得到具有Iniferter功能的多官能度自由基活性微凝胶,该活性微凝胶引发苯乙烯聚合得到星型高分子,星型高分子中仍有Iniferter功能的基团.  相似文献   

7.
基于非平衡溶剂化能的约束平衡方法和溶剂重组能的新表达式, 实现了电子转移反应溶剂重组能的数值解, 研究了二氯二氰基苯醌(DDQ)及其阴离子体系DDQ-之间的自交换电子转移反应. 考虑了DDQ与DDQ-分子以平行方式形成受体-给体络合物时的两种构型. 引入线性反应坐标, 计算了该反应在不同溶剂中的溶剂重组能. 基于两态变分模型得到了反应的电子耦合矩阵元. 根据电子转移动力学模型, 计算了该自交换电子转移反应的速率常数.  相似文献   

8.
采用3种合成策略来制备(苯胺齐聚物-b-聚乙二醇)3三臂星型刚柔嵌段共聚物,获得了预期的目标产物.对每一种合成策略中各阶段的产物进行了结构表征,分析讨论了氧化偶联策略A和"先臂后核"缩合策略B的优点以及存在的问题,最终发展了简单、高效的"先核后臂"缩合策略C,即从均苯三甲酰氯和氨基/羧基封端苯胺四聚体出发,通过酰基化反应得到单分散的苯胺四聚体星型中间体M03,然后以1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDCI)和4-二甲氨基吡啶(DMAP)为催化剂,使星型中间体M03与聚乙二醇单甲醚(m-PEG 550)经过脱水缩合反应得到(苯胺四聚体-b-聚乙二醇)3星型刚柔嵌段共聚物,并用红外光谱、质谱、核磁氢谱等进行了表征,表明所获得的产物与预期结构一致.  相似文献   

9.
二氧化碳加氢合成低碳烯烃反应平衡体系热力学研究   总被引:13,自引:0,他引:13  
刘业奎  王黎  侯栋  万华  冯霄 《催化学报》2004,25(3):210-218
 随着世界工业的发展,含碳物质氧化的最终产物CO2的排放量与日俱增,CO2温室气体对环境的污染已引起人们广泛的关注. 研究证明,CO2可作为单体转化为烃进行二次利用,是最有前景的抑制其大量排放的途径. 在化学反应工程上,热力学研究可以为反应体系提供一个反应物转化率的理论最大值,从而更加清楚地认识这一反应体系,为衡量催化剂的效果提供有利的尺度,进而指导催化剂的开发工作. 对CO2加氢合成低碳烯烃反应体系平衡时进行了热力学研究,通过数学方法对催化作用下反应体系的热力学参数进行求解,分析了反应体系平衡时各相的平衡组成及其同温度、压力和氢/碳比之间的关系. 结果表明,CO2理论最高转化率为69%~71%.  相似文献   

10.
影响间位取代四苯基卟啉锌轴向配合物稳定因素的研究   总被引:2,自引:0,他引:2  
用光度滴定法研究了间位取代四苯基卟啉锌[ZnT(m-X)PP,X=NO2,Cl,OCH3,H,CH3]与3种新型空间不对称金属席夫碱和4种取代咪唑的轴向配位反应动力学.采用Rose-Drago数据处理方法确定了各反应体系的平衡常数,探讨了温度、轴向配体、卟啉环上的取代基对轴向配合物稳定性的影响,发现在5种间位取代四苯基卟啉锌与7种轴向配体的配位反应中均存在线性自由能关系和等平衡关系,对所研究体系采用不同的方法求取等平衡温度β及温度T→∞时的反应对电子效应的敏感系数ρ,得到吻合的结果.  相似文献   

11.
A coarse-grained model of star-branched polymer chains confined in a slit was studied. The slit was formed by two parallel impenetrable surfaces, which were attractive for polymer beads. The polymer chains were flexible homopolymers built of identical united atoms whose positions in space were restricted to the vertices of a simple cubic lattice. The chains were regular star polymers consisted of f = 3 branches of equal length. The chains were modeled in good solvent conditions and, thus, there were no long-range specific interactions between the polymer beads-only the excluded volume was present. Monte Carlo simulations were carried out using the algorithm based on a chain's local changes of conformation. The influence of the chain length, the distances between the confining surfaces, and the strength of the adsorption on the properties of the star-branched polymers was studied. It was shown that the universal behavior found previously for the dimension of chains was not valid for some dynamic properties. The strongly adsorbed chains can change their position so that they swap between both surfaces with frequency depending on the size of the slit and on the temperature only.  相似文献   

12.
Summary. We studied the properties of a simplified model of star-branched polymers confined in a slit formed by two parallel and impenetrable surfaces. The chains were built of identical united atoms (segments) whose positions were restricted to vertices of a simple cubic lattice. The polymer excluded volume and polymer segment-surface contact interactions were also introduced into the model. The properties of the model chains were determined by means of Monte Carlo simulations with a Metropolis-type sampling algorithm based on local changes of chain’s conformation. The structure of star-branched chains was investigated and the influence of the confinement and the temperature on the chain dimensions and structure was studied. It was shown that for chains in the adsorbing slits their sizes do not exhibit a universal behavior contrary to confined athermal polymers. The polymers in narrow slits at higher temperatures still exhibited features of a three-dimensional chain. It was also shown that chains in small slits and at low temperatures were fully adsorbed at one of the surfaces but could also switch the surface rapidly.  相似文献   

13.
A simple cubic lattice model of the melt of 3-arm star-branched polymers of various length dissolved in a matrix of long linear chains (n1 = 800 beads) is studied using a dynamic Monte Carlo method. The total polymer volume fraction is equal to 0,5, while the volume fraction of the star polymers is about ten times smaller. The static and dynamic properties of these systems are compared with the corresponding model systems of isolated star-branched polymers and with the melt of linear chains. It has been found that the number of dynamic entanglements for the star polymers with arm length up to 400 segments is too small for the onset of the arm retraction mechanism of polymer relaxation. In this regime dynamics of star-branched polymers is close to the dynamics of linear polymers at corresponding concentration and with equivalent chain length. The entanglement length for star polymers appears to be somewhat larger compared with linear chains.  相似文献   

14.
By use of the pivot algorithm, star-branched chains with F = 4, 8 and 12 arms of length n and linear chains (F = 2) are generated on a tetrahedral lattice (120 ≤ nF ≤ 3 840). By taking into account nearest neighbour interactions (each contact contributes an energy ϕ kT to the total energy of the configuration) a variation of the thermodynamic quality of the solvent is simulated by a variation of the energy parameter ϕ near the value of ϕθ = -0,475, characteristic of theta-conditions. For theta-conditions various quantities characteristic of the instantaneous shape of polymers exhibit similar values as found for nonreversal random walks; furthermore, while linear theta-chains are slightly less asymmetric than athermal ones, the opposite behaviour is found for star-branched polymers. Clearly, for all thermodynamic conditions the asymmetry of configurations decreases with increasing number of arms but remains appreciable even for F = 12.  相似文献   

15.
A model polymer network was constructed from branched chains. Each chain was built on a simple cubic lattice forming a star-branched polymer consisting of f = 3 arms of equal lengths. The fragment of network under consideration consisted of 1, 2 and 3 star polymers with different topology of connections. The only potential used was excluded volume (athermal chains). The properties of the network were determined by the means of computer simulations using the classical Metropolis sampling algorithm (local micromodifications of chain conformation). The behaviour of linear chains of the same molecular weight was also studied as a state of reference. The influence of attaching the next star-branched chain to the network on its static and dynamic properties was studied. The short-time dynamic behaviour of chain fragments was determined and discussed.  相似文献   

16.
The use of living linking reactions of poly(styryl)lithium with 1,3-bis(1-phenylvinyl)benzene followed by crossover reactions with styrene or butadiene monomers has been used to prepare four-armed heteroarm, star-branched polymers. Bimodal molecular weight distributions have been observed for crossover reactions with both styrene and butadiene. Addition of THF ([THF]/[Li]=14–32) for crossover to styrene and lithium sec-butoxide for crossover to butadiene produces monomodal molecular weight distributions. Symmetrical, four-armed star polystyrenes have been synthesized; properties have been compared with a corresponding polymer prepared via a silicon tetrachloride linking reaction. Heteroarm, star-branched polymers with two polystyrene arms and two polybutadiene arms with high 1,4-microstructure have been prepared.  相似文献   

17.
The synthesis of well-defined regular and miktoarm star-branched polymers by a convergent iterative methodology using core-functionalized 3-arm star-branched polymer with 1,1-diphenylethylene (DPE) moiety and a specially designed DPE derivative is described. The methodology involves the following two reaction steps in the entire iterative synthetic sequence: 1) a coupling reaction of a star-branched polymer having an anion at the core with a DPE derivative with two benzyl bromide moieties, 1-{4-[5,5-bis(3-bromomethylphenyl)-7-methylnonyl]phenyl}-1-phenylethylene, and 2) an addition reaction of the resulting core-DPE-functionalized star-branched polymer with sec-BuLi to convert the DPE moiety to a DPE-derived anion. The iterative synthetic sequence including these two reaction steps, 1) and 2), was repeated to successively synthesize star-branched polymers with more arms. Iteration of this synthetic sequence doubled the number of the arms in the star-branched polymer. With this methodology, 6-arm, 12-arm, and 14-arm regular star-branched polystyrenes as well as 6-arm A2B2C2, A4B2, and 12-arm A4B4C4 and A8B4 miktoarm star-branched polymers with well-defined structures have been successfully synthesized.  相似文献   

18.
A series of four-armed A2BC, AB2C, and ABC2 asymmetric star-branched polymers with a three-component system, the A, B, and C segments of which are polystyrene, polyisoprene, and poly(4-trimethylsilylstyrene), respectively, have been successfully synthesized with a methodology based on living anionic polymerization with dual-functionalized 1,1-bis(3-chloromethylphenyl)ethylene ( 1 ). These star-branched polymers have well-defined architectures and precisely controlled chain lengths, as confirmed by size exclusion chromatography, 1H and 13C NMR, vapor pressure osmometry, and static light scattering analyses. A simple and convenient one-pot process for star-branched polymer synthesis is an additional advantage of this methodology. One problem to be solved is that the synthetic route is limited in some cases by the inherently low reactivity of polyisoprenyllithium toward the 1,1-diphenylethylene functionality of in-chain-functionalized polymers. A new four-armed ABCD star-branched polymer, the A, B, C, and D segments of which are polyisoprene, poly(4-methoxystyrene), polystyrene, and poly(4-trimethylsilylstyrene), could also be synthesized through the extension of the methodology using 1 to a four-component system. The successful results strongly demonstrate the synthetic versatility and potential of this methodology for a wide variety of well-defined asymmetric star-branched polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4535–4547, 2004  相似文献   

19.
Simple models of the star-branched and linear polymers were studied by means of a Monte Carlo method. The chains were confined on a simple cubic lattice. Star-branched polymers consisted of f=3 arms of equal length. The total number of beads in both types of polymers was varied from N=49 to N=799. The simulations were performed in different solvent qualities—from a good solvent to a collapsed globule regime. The static properties of the chains under consideration were measured as functions of the temperature of the system. It appeared that the ratio of the radius of gyration to the mean end-to-end vector is very sensitive to solvent quality. It shows that the coil-to-globule transition is a complicated phenomenon. The possible explanation of the phenomenon is discussed.  相似文献   

20.
We considered two model systems of star-branched polymers near an impenetrable surface. The model chains were constructed on a simple cubic lattice. Each star polymer consisted of f = 3 arms of equal length and the total number of segments was up to 799. The excluded volume effect was included into these models only and therefore the system was studied at good solvent conditions. In the first model system polymer chain was terminally attached with one arm to the surface. The grafted arm could slide along the surface. In the second system the star-branched chain was adsorbed on the surface and the strength of adsorption was were varied. The simulations were performed using the dynamic Monte Carlo method with local changes of chain conformations. The internal and local structures of a polymer layer were determined. The lateral diffusion and internal mobility of star-branched chains were studied as a function of strength of adsorption and the chain length. The lateral diffusion and internal mobility of star-branched chains were studied as a function of strength of adsorption and the chain length. It was shown that the behavior of grafted and weakly adsorbed chains was similar to that of a free three-dimensional polymer, while the strongly adsorbed chains behave as a two-dimensional system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号