首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new chromone-substituted dihydrotriflavonol, (2S,3S)[6-{(3S) 3″,5″-dihydroxy-6″-methoxydihydrochromone}5,3′,4′,5′-tetrahydroxy-7-methoxy-3-O-8-dihydroflavone]2 3-O-8[6-{(3S) 3″,5″-dihydroxy-6″methoxydihydrochromone}3,5,3′,4′,5′-pentahydroxy-7-methoxydihydroflavonol] was isolated from the leaves of Anogeissus pendula. The structure was determined by UV, 1H NMR, 13C NMR, HMBC, and CD data.  相似文献   

2.
Sodium and potassium complexes with 4′-(4‴-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L1) and 4′-(4′-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L2) and heteronuclear Na, K, Ca, and transition metal complexes with L1 were synthesized. The structure of the complexes was proposed on the basis of elemental analysis data, IR spectra, and the results of earlier X-ray diffraction studies of L2, [NaL1NCS], and [Na2{Cu(L1)2}(NCS)3]NCS · CH3CN.  相似文献   

3.
Condensation of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with naphthalen-1-amine and cyclohexane-1,3-dione, methyl 2,2-dimethyl-4,6-dioxocyclohexane-1-carboxylate, or dimedone gave the corresponding 7-(2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-7,8,9,10,11,12-hexahydro-12H-benzo[c]acridin-8-ones. The reaction of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with naphthalen-1-amine and indan-1,3-dione produced 7-(2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-8H-benzo[h]indeno[1,2-b]quinolin-8-one. 7-(2′-Hydroxy-1,1′: 3′,1″-terphenyl-5′-yl)-7,8,9,10,11,12-hexahydrobenzo[b][1,10]phenanthrolin-8-ones were obtained by three-component condensation of 2′-hydroxy-1,1′: 3′,1″-terphenyl-5′-carbaldehyde with quinolin-8-amine and cyclohexane-1,3-dione, methyl 2,2-dimethyl-4,6-dioxocyclohexane-1-carboxylate, or dimedone.  相似文献   

4.
Synthetic procedures were developed and X-ray diffraction analysis was performed for two mixed-ligand compounds of europium(III) with diethyldithiocarbamate ions and 2,2′-bipyridyl (2,2′-Bipy) or 1,10-phenanthroline (Phen): Eu(S2CN(C2H5)2)3(2,2′-Bipy) (I) and Eu(S2CN(C2H5)2)3Phen (II). The structures of the complexes consist of discrete monomer molecules; the coordination polyhedron of Eu (EuN2S6 is a node) is a distorted dodecahedron. Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 39, No. 2, pp. 300–309, March–April, 1997.  相似文献   

5.
Euchrenone a2 (7) isolated from the roots ofEuchresta japonica has been synthesised from 3-prenylphloroacetophenone (1) by other workers. We carried out its cyclodehydrogenation with dichloro dicyano quinone (DDQ) to obtain 6-acetyl-5,7-dihydroxy-2,2-dimethylchromene (2) which was ethoxymethylated in the 7-position to give 6-acetyl-7-ethoxymethoxy-5-hydroxychromene (3). Chalcone condensation of3 and 4-ethoxymethoxy-3-C-prenylbenzaldehyde (4) gave 4,6′-bisethoxymethoxy-2′-hydroxy-6″, 6″-dimethyl-3-C-prenylpyrano (2″, 3″–4,3) chalcone (5) which cyclised with methanolic sodium acetate to give protected 5,4′-bisethoxymethoxy-6″, 6″-dimethyl-3′-C-prenylpyrano (2″, 3″–7,8) flavanone (6). Deprotection of6 with 4% methanolic HCl yielded (7) with melting point and spectral data identical to that of the natural compound.  相似文献   

6.
The synthesis and photophysical properties of several 6,6″ symmetrically substituted 4′-aryl-2,2′:6′,2″-terpyridine derivatives are reported herein. The UV-Vis spectra in acetonitrile as well as in dichloromethane show two intense bands in the UV areas 252–262 nm and 275–290 nm while the fluorescence emission spectra are only slightly influenced by chemical derivatization.  相似文献   

7.
Diazonium salts were prepared by diazotization of 4′-amino-, 4′,4″-, and 4′,5″-diaminodibenzo-18-crown-6. Their coupling products with kojic acid (5-hydroxy-2-hydroxymethyl-γ-pyrone) were synthesized for the first time: 4′-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-, 4′,4″-di-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-, and 4′,5″-di-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-dibenzo-18-crown-6. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 415–416, September–October, 2006.  相似文献   

8.
We have synthesized high-spin mixed-ligand Mn2+ complexes Mn(S2COR)2L where R=i−C3H7, i−C4H9; [L=1,10-phenanthroline (Phen), 2,2′-bipyridyl (2,2′-Bipy), 4,4′-bipyridyl (4,4′-Bipy)]. As solids, the compounds are stable to oxidation by atmospheric oxygen. An X-ray structural study of the [Mn(S2COC3H7−i)2(2,2′-Bipy)] complex was carried out. The structure is composed of discrete monomeric molecules. The corrdination polyhedron of the Mn atom is a distorted [4S+2N] octahedron. The molecules are bonded by van der Waals interactions. Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 2, pp. 106–111, March–April, 1994. Translated by T. Yudanova  相似文献   

9.

Abstract  

Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials.  相似文献   

10.
Mimicking the Superoxide Dismutase Enzyme (SOD), several imidazolato-bridged copper(II)-zinc(II) complexes were prepared, characterised by IR spectroscopy and their SOD enzyme activity was determined. 2,2′-Bipyridine, 2,2′:6′,2″-terpyridine and tris(2-aminoethyl)amine molecules were used on both metal sides, as coordinating ligands. The complex, containing the 2,2′:6′,2″-terpyridine ligand on copper side has the smallest SOD activity, which indicates the importance of the rigidity of the copper complex in SOD activity.  相似文献   

11.
Complexes of Co(II), Ni(II), Zn(II), and Cu(II) perchlorates and hexafluorophosphates with 4′-(4″-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L) [M(L)2](ClO4)2 · 3H2O and [M(L)2](PF6)2 · 2H2O were synthesized. The spectral criteria of ligand coordination through the terpyridine nitrogen atoms were established. An assumption concerning the benzo-15-crown-5 conformation in the ligand molecule in the synthesized complexes was made. The extraction and ion-selective properties of L were studied.  相似文献   

12.
Abstract  Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials. Graphical Abstract  
Shinya HayamiEmail:
  相似文献   

13.
Phosphole-based systems due to the unique electronic and optical properties have recently been paid much attention as optoelectronic materials. In this work, the relationship among the electronic structure, charge injection, and transport was investigated for five derivatives of dithieno[3,2-b:2′,3′-d]phosphole (systems 15). The structures of systems 15 in the ground (S0) and the lowest singlet excited (S1) states were optimized at the HF/6-31G* and CIS/6-31G* levels of theory, respectively. Based on these structures, electronic spectra were calculated by time-dependent density functional theory. The simulated emission peaks of five phosphole derivatives locating at the blue–green region (448–516 nm), are in good agreement with the experimental data. Compared with tris-(8-quinolinolate) aluminum (III) (Alq3), normally used as an excellent electron transporter, systems 15 show a significant improvement in electron affinity (EA) due to σ*–π* hyperconjugation, which can effectively promote ability of electron injection. The small differences between λ h and λ e for systems 15 (0.06–0.14 eV) facilitate charge transfer balance, which suggests systems 15 can act as potential ambipolar materials. Owing to good rigidity, low-lying LUMO levels, delocalized frontier molecular orbitals, and the small reorganization energies, the five derivatives of dithieno[3,2-b:2′,3′-d]phosphole are expected to be high-efficiency blue materials in single-layer OLEDs.  相似文献   

14.
The electronic structures and spectroscopic properties of [(4′-XC≡Ctrpy)PtCl]+(trpy = 2,2′:6′,2″-terpyridine; X = H (1), methyl (Me) (2), and phenyl (Ph) (3) were studied by the ab initio method. The structures at the ground and excited state were optimized at the B3LYP and CIS levels, respectively. The absorption and emission spectra in the dichloromethane solution were obtained by using the TD-DFT (B3LYP) method associated with the PCM model. The molecular orbital energy of the HOMOs of 1–3 with the d(Pt), p(Cl), π(trpy), and π(XC≡C) character is sensitive to the substituents on the acetylide ligand, but that of the trpy-based LUMOs with the π*(trpy) character varies slightly. The lowest lying emission at 503 nm for 1 is mainly attributed to the 3ILCT perturbed by the 3MLCT and 3LLCT transitions, but that at 535 nm for 2, and that at 558 nm for 3 are mainly attributed to the 3LLCT perturbed by the 3ILCT and 3MLCT transitions. The different electron-donating ability of H, Me, and Ph is responsible for the differences in emission character. Moreover, the calculation results show that the phosphorescent color can be turned by adjusting the substituents. Both the lowest energy absorption and emission of 1–3 are red-shifted in the order of 1<2<3, consistent with the electron-donating of H<Me<Ph.  相似文献   

15.
The homoleptic compound Ru(II)(L)2 where L = 4′-carboxylato-2,2′:6′,2″-terpyridine was employed as a bridge to link two [Mo2(O2CBu t )3]+ units in the formation of the title complex: [Mo2(O2CBu t )3]2-μ-Ru(II)L2] (2+) [BF4]2, which has been characterized by 1H-NMR, UV–vis and emission spectroscopy, MALDI-TOF-MS and cyclic voltammetry. The electronic structure of the complex has been investigated by density functional theory employing Turbomole on the model complex cation [Mo2(O2CH)3]2-μ-(Ru(II)L2)2+. The intense blue color of the cation arises from M2 δ to bridge/terpyridine charge transfer. This paper is dedicated to Prof. F. A. Cotton in memoriam.  相似文献   

16.
This paper describes the structural studies of 2-phenyl-9,9′-dimethyl-2,2′-spirobis(1,3,2-λ5-benzoxazarsoline) 5, 2-phenyl-8,8′-dimethyl-2,2′-spirobis(1,3,2-λ5-benzoxazarsoline) 6 by 1H,13C,15N NMR in [2H6]DMSO and CDCl3. The solid state studies were made by X-ray experiments. Infrared spectroscopy was obtained in CDCl3 and the vibrational signals were assigned using DFT calculations. The nature of the As–N, As–C and As–O bonds in these compounds was established by NBO studies.  相似文献   

17.
Reactions of 2-hydroxy-1-naphthaldehyde with 1,4-diaminobutane, 1,6-diaminohexane, 4,4′-methylenedianiline and its alkyl- and cycloalkyl-sybstituted derivatives, with 4,4′-sulfonyldianiline, 2,2′- and 4,4′-oxydianiline, 4,4′-(1,4-phenylenebisoxy)dianiline, 4,4′-[propane-2,2-diylbis(1,4-phenylenebisoxy)]dianiline, and p-terphenyl-4,4″-diamine afforded a series of the corresponding diimines that at treating with TiCl2(OPr-i)2 formed mono- and binuclear complexes of titanium(IV) dichloride with tetradentate ligands LTiCl2 and L2(TiCl2)2.  相似文献   

18.
A novel organic–inorganic hybrid compound [Cu(2,2′-bipy)(C6H5NO2)(H2O)]2[Mo8O26]·5H2O (1), (2,2′-bipy = 2,2′-bipyridine; C6H5NO2 = pyridine-4-carboxylic acid) has been prepared and characterized by elemental analyses, IR spectrum, thermal stability analysis, and single-crystal X-ray diffraction. Compound 1 is a discrete cluster, constructed from β-[Mo8O26]4− subunits covalently bonded to two [Cu(2,2′- bipy)(C6H5NO2)(H2O)]24+ coordination cations via terminal oxo groups that connect one molybdenum site. A 3D supramolecular network is further formed by extensive hydrogen bonding interactions and π–π interactions of the 2,2′-bipy and pyridine-4-carboxylic acid ligands. EPR and magnetic susceptibility studies have been used to elucidate the electronic properties of the Cu2+ centres, and the results are in good agreement with the structural features of the compound.  相似文献   

19.
The complexation reactions of 4′-nitrobenzo-15-crown-5 (4′NB15C5) with Zn2+, Mn2+, Cr3+ and Sn4+ cations were studied in acetonitrile–ethanol (AN–EtOH) binary solvent mixtures at different temperatures by the electrical conductometry method. The stability constants of the resulting 1:1 complexes were determined from computer fitting of the conductance versus mole ratio data. The results show that the selectivity order of 4′NB15C5 for the metal cations in the AN–EtOH (mol-%AN=76) binary solvent at 298.15 K is: Cr3+>Mn2+≈Zn2+>Sn4+, but the selectivity order changes with the composition of the mixed solvents. A nonlinear relationship was observed between the stability constants (log 10 K f) of these complexes and the composition of the AN–EtOH binary solvents. The corresponding thermodynamic parameters (DHco, DSco)(\Delta H_{\mathrm{c}}^{\mathrm{o}}, \Delta S_{\mathrm{c}}^{\mathrm{o}}) were obtained from the temperature dependence of the stability constants using van’t Hoff plots. The results show that the values and also the sign of these parameters are influenced by the nature and composition of the mixed solvents.  相似文献   

20.
The synthesis, optical, thermal, and photoelectrical properties of new thiophene-based hydrazones are reported. The ionization potentials of the films of thiophene-based hydrazones, measured by the electron photoemission technique, range from 4.99 to 5.58 eV. Hole-drift mobilities in the solid solutions in bisphenol-Z polycarbonate (PC-Z) of the synthesized hydrazones were studied by time of flight technique. Room temperature charge mobilities in the solid solution of 5,2″-diformyl-2,2′:5′,5″-terthiophene di(N,N-diphenylhydrazone) in PC-Z exceeded 10−5 cm2/Vs at high applied electric fields. Correspondence: Juozas Vidas Grazulevicius, Department of Organic Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号