共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion 总被引:1,自引:0,他引:1
In this work, polypropylene-clay nanocomposites are obtained and studied by using two different coupling agents, diethyl maleate and maleic anhydride. Two different clays, a commercial montmorillonite (Nanomer I30.TC) and a sodium bentonite purified and modified with octadecylammonium ions have also been used. The relative influence of each factor, matrix and clay modification, can be observed from structural analysis (SAXS, TEM) and mechanical properties. An explanation of the results is proposed according to the microstructure and chemical nature of the systems and the thermodynamic interactions operating during nanocomposite preparation. 相似文献
2.
Polystyrene (PS)/clay nanocomposites were successfully prepared by the γ-ray irradiation technique. Four different types of organophilic clays were used: three of the four contained a reactive group, while the other did not. Exfoliated PS/clay nanocomposites can be obtained by using reactive organophilic clay and intercalated PS/nanocomposites can be formed by using non-reactive ones, which was confirmed by X-ray diffraction (XRD) and by transmission electron microscopy (TEM). In the formation of exfoliated PS/nanocomposites, the effect of the double bond of the clay-intercalated agents is much more important than the alkyl chain length. The enhanced thermal properties of PS/nanocomposites were characterized by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). In particular, the enhancement of the thermal properties of PS/nanocomposites made using the reactive organophilic clay was much higher than that of the thermal properties of PS/nanocomposites incorporating non-reactive clay. 相似文献
3.
Dimitri D.J. Rousseaux 《Polymer Degradation and Stability》2010,95(7):1194-451
Sodium-montmorillonite was intercalated by carboxylate salts to prepare carboxylate clays. The intercalation of sodium acetate doubles the clay basal spacing and no degradation of the carboxylate clay is noticed in the extrusion temperature range. These carboxylate clays were used to synthesize polypropylene-graft-maleic anhydride (PP-g-MA)/clay nanocomposites. Nanocomposites were also produced by a one-pot process using in situ prepared carboxylate clay. The carboxylate salts within the clay layers partially neutralize the maleic anhydride groups of the PP-g-MA matrix, in situ during the melt compounding. The ionic groups of the partially neutralized polymer offer favourable interactions with the clay, hence reinforcing the interfacial bond between the polymer and the clay and improving the composite properties. The use of carboxylate clay clearly improves the clay dispersion into the PP-g-MA matrix and improves the nanocomposite’s thermal and rheological properties. 相似文献
4.
Blends of polyamide 6 (PA6) and high-density polyethylene (HDPE) were compatibilized using an already investigated method and a sample of Cloisite 15A, a montmorillonite modified with ammonium quaternary salts was added. The blends were prepared in a twin screw extruder and characterized from a morphological, rheological and mechanical point of view. The results indicated that, despite a good morphology achieved in the filled blends and a moderate intercalation of the clay, the mechanical properties are far from being good, especially the ultimate properties.In order to investigate the possible influence of the inhibition of the crystallization and of the degradation of the organic modifier of the clay, DSC measurements and FTIR-ATR were carried out. The results confirm that the clay causes a slight decrease of the crystallization, particularly in the HDPE phase. In addition, in the preparation conditions, the clay modifier is sensitive to thermo-oxidation. Both features can, therefore, explain the bad mechanical performance, even if the degradation effects seem to be more important. In order to prevent, or at least to reduce, the thermo-oxidation, a stabilizing system was added to the filled blends. In this case, the mechanical properties are improved for the entire compatibilized blend set. 相似文献
5.
Defeng Wu 《Polymer Degradation and Stability》2006,91(12):3149-3155
Polylactide/clay nanocomposites (PLACNs) were prepared by melt intercalation. The intercalated structure of PLACNs was investigated using XRD and TEM. Both the linear and nonlinear rheological properties of PLACNs were measured by parallel plate rheometer. The results reveal that percolation threshold of the PLACNs is about 4 wt%, and the network structure is very sensitive to both the quiescent and the large amplitude oscillatory shear (LAOS) deformation. The stress overshoots in the reverse flow experiments were strongly dependent on the rest time and shear rate but shows a strain-scaling response to the startup of steady shear flow, indicating that the formation of the long-range structure in PLACNs may be the major driving force for the reorganization of the clay network. The thermal behavior of PLACNs was also characterized. However, the results show that with the addition of clay, the thermal stability of PLACNs decreases in contrast to that of pure PLA. 相似文献
6.
Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites 总被引:2,自引:0,他引:2
In order to further improve thermal stability of the phenolic resins, we combined boron and clay with phenolic resins to prepare nanocomposites (BH-B, BP-B, and BE-B series). Boron-containing phenolic resin/clay (montmorillonite) nanocomposites were prepared using in situ polymerization of resol-type phenolic resins. Montmorillonite (MMT) was modified by benzyldimethylhexadecylammonium chloride (BH), benzyldimethyphenylammonium chloride (BP), and benzyltriethylammonium chloride (BE). X-ray diffraction measurements and transmission electron microscope (TEM) observations showed that clay platelets were partially exfoliated after complete curing of the phenolic resins. Thermogravimetric analysis showed that thermal decomposition temperatures (Td) and residual weight at 790 °C of cured boron-containing nanocomposites were much higher than the corresponding nanocomposites without boron. For example, the rise in decomposition temperature of BE-B10% is about 42 °C (from 520 to 566 °C), whereas the increase in char yields is 6.4% (from 66.2% to 72.6%). However, the boron-containing composites were more prone to absorb moisture (ca. 9-14%) than boron-free ones (ca. 3-4%), which was attributed to unreacted or partially reacted boric acid during preparation process. 相似文献
7.
Prevulcanized natural rubber latex/clay aerogel nanocomposites 总被引:2,自引:0,他引:2
Tassawuth Pojanavaraphan 《European Polymer Journal》2008,44(7):1968-1977
Natural rubber latex (NR)/clay aerogel nanocomposites were produced via freeze-drying technique. The pristine clay (sodium montmorillonite) was introduced in 1-3 parts per hundred rubber (phr) in order to study the effect of clay in the NR matrix. The dispersion of the layered clay and the morphology of the nanocomposites were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Cure characteristics, thermal stability, and the crosslink density of thermal and microwave-cured NR and its composites were investigated. XRD patterns indicated that both intercalated and exfoliated structures were observed at loadings of 1-3 phr clay. SEM studies revealed that the clay aerogel structure was formed at 3 phr clay loading. The increment in Shore A hardness of nanocomposites compared with pure NR signified excellent polymer/filler interaction and the reinforcing effect of the clay to rubber matrix. This was supported by an increase in maximum rheometric torque and crosslink density. The crosslink density of clay-filled NR vulcanizate was found to increase with the pristine clay content in both thermal and microwave curing methods. However, microwave-cured 2 and 3 phr-filled NR vulcanizates exhibited higher crosslink density than those which were thermal-cured under the same curing temperature. In addition, thermal stability studies showed that pristine clay accelerated the decomposition of NR by showing a slight decrease in onset and peak decomposition temperatures along with clay content. 相似文献
8.
Polycarbonate/clay nanocomposites (PCNs) were prepared by melt intercalation using epoxy resin as a compatibilizer. The intercalated structure of PCNs was investigated using XRD and TEM. The linear and nonlinear dynamic rheological properties of PCNs were measured by the use of a parallel plate rheometer. The results reveal that the presence of epoxy influences rheological behavior of PCNs significantly. Addition of epoxy can improve dispersion of clay, enhancing the low-frequency viscoelastic responses; while high loadings of epoxy lead to a severe degradation of PC matrix, decreasing the high-frequency responses together with the plasticizing effect of excessive epoxy. Both of these two effects result in invalidity of time-temperature superposition. Moreover, all samples show high sensitivity to both the quiescent and large amplitude oscillatory shear (LAOS) deformation, despite enhanced percolation of tactoids due to the compatibilization of epoxy. 相似文献
9.
Polyethylene and polypropylene nanocomposites based upon an oligomerically modified clay 总被引:5,自引:0,他引:5
Montmorillonite clay was modified with an oligomeric surfactant, which was then melt blended with polyethylene and polypropylene in a Brabender mixer. The morphology was characterized by X-ray diffraction and transmission electron microscopy, while thermal stability was evaluated from thermogravimetric analysis and the fire properties by cone calorimetry. The nanocomposites are best described as mixed immiscible/intercalated/delaminated systems and the reduction in peak heat release rate is about 40% at 5% inorganic clay loading. 相似文献
10.
Maria Inês Bruno Tavares Regina Freitas Nogueira Rosane Aguiar da Silva San Gil Monica Preto Emerson Oliveira da Silva Mariana Bruno Rocha e Silva Eduardo Miguez 《Polymer Testing》2007,26(8):1100-1102
In this paper, we used low-field nuclear magnetic resonance (NMR) relaxometry and X-ray diffraction techniques to characterize polypropylene and to probe the polypropylene/clay interactions in non-exfoliated and exfoliated polypropylene–clay nanocomposites. Differences in T1H longitudinal relaxation time data and X-ray diffraction spectra were correlated with the presence of different domains in the samples studied. The results demonstrated the potential of H NMR relaxometry as a tool in the characterization of polymer–clay nanocomposites. 相似文献
11.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were compatibilized with maleic anhydride-grafted ethylene-propylene rubber (EPRgMA). The blends were melt compounded in twin screw extruder followed by injection molding. The mechanical properties of PA6/PP nanocomposites were studied by tensile and flexural tests. The microstructure of the nanocomposite were assessed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The dynamic mechanical properties of the PA6/PP blend-based nanocomposites were analyzed by using a dynamic mechanical thermal analyzer (DMTA). The rheological properties were conducted from plate/plate rheometry via dynamic frequency sweep scans. The melt viscosity in a high shear rate region was performed by using a capillary rheometer. The strength and stiffness of the PA6/PP-based nanocomposites were improved significantly with the incorporation of EPRgMA. Adding EPRgMA to the PA6/PP blends resulted in a finer dispersion of the PP phase. TEM and XRD results revealed that the organoclay was dispersed more homogeneously in the presence of EPRgMA, however, mostly in the PA6 phase of the blends. DMTA results showed that EPRgMA worked as an effective compatibilizer. The storage (G′) and loss moduli (G″) assessed by plate/plate rheometry of PA6/PP blends increased with the incorporation of EPRgMA and organoclay. Furthermore, the apparent shear viscosity of the PA6/PP blend increased significantly for the EPRgMA compatibilized PA6/PP/organoclay nanocomposite. This was traced to the formation of an interphase between PA6 and PP (via PA6-g-EPR) and effective intercalation/exfoliation of the organoclay. 相似文献
12.
Dan Yu Malte KleemeierGuang Mei Wu Bernhard SchartelWei Qu Liu Andreas Hartwig 《Polymer Degradation and Stability》2011,96(9):1616-1624
Due to optimised processing of epoxy based composite materials containing a low-melting organic-inorganic glass together with an organo clay, the size of the glass particles could be successfully reduced. Thus truly nano-dispersed composites were obtained, with glass particles in the range of 10 nm to 200 nm. The small particle size allowed efficient interaction of glass particles and organo clay layers. The flame retardancy as well as the thermo-mechanical properties were tested, and the results showed that the low-melting glass led to a remarkable reduction of peak heat release rate by forming an enhanced barrier layer. Nevertheless no further improvement could be achieved by lowering the particle size to the nanometre region. For good flame retardancy a microdispersion of the low-melting glass was already sufficient. 相似文献
13.
Jamaliah Sharif Khairul Zaman Mohd Dahlan Wan Md Zin Wan Yunus 《Radiation Physics and Chemistry》2007,76(11-12):1698-1702
Effect of electron beam irradiation on the thermal and mechanical properties of poly(ethylene-co-vinyl acetate) (EVA)/clay nanocomposites prepared by melt blending method has been investigated. The hot set test results show that elongation at high temperature under static load decreased with the increase of irradiation dose. The tensile modulus increased continuously with increasing dose. While the tensile strength increased up to 100 kGy, it decreased with further increase in dose. The elongation at break decreased continuously with increasing dose. Thermogravimetric analysis showed that thermal stability of the EVA/clay nanocomposites improved with increasing dose. The improvement in the mechanical and thermal properties is attributed to the formation of radiation-induced crosslinking as evidenced by the gel content results. 相似文献
14.
Eric Pollet 《European Polymer Journal》2006,42(6):1330-1341
We report here on the melt intercalation preparation of polymer/clay nanocomposites based on three commercial synthetic biodegradable polyesters: EastarBio Ultra, Ecoflex, and Bionolle, respectively. The montmorillonite clay addition is performed either by direct dispersion of Cloisite 30B in the polyester matrix or by dispersing a “PCL-grafted Cloisite 30B” masterbatch in the biodegradable polyesters. All obtained nanocomposites display an intercalated morphology as attested by X-ray diffraction measurements. The various analyses clearly show that the Bionolle (BIO) matrix gives the best results. Morphological characterization and mechanical properties of these nanocomposites also show that the “masterbatch route” leads to poor results as a consequence of the very low compatibility between the poly(ε-caprolactone) (PCL) of the masterbatch and the three other polyester matrices. In a second part, nanocomposites based on the BIO matrix are prepared by direct dispersion of the organo-clay in the presence of three different metal-based catalysts with the aim to promote transesterification reactions between the nanocomposite constituents. The mechanical properties and morphological characterization of these nanocomposites show that the tin-based catalyst (Sn) is the more efficient. Indeed, the effectiveness of transesterification reactions taking place between the ester functions of the BIO matrix and the hydroxyl groups of the organo-clay and the resulting “grafting” of BIO chains on the organo-clay surface are confirmed by thermogravimetric analyses performed after the extraction procedure. TEM observations show that this catalyst enhances the clay platelets exfoliation within the BIO matrix as a consequence of the transesterification reactions. Nanocomposites prepared in presence of Sn show better clay dispersion and enhanced stiffness with a 60% increase in Young’s modulus. 相似文献
15.
Sedigheh Bagheri‐Kazemabad Daniel Fox Yanhui Chen Hongzhou Zhang Biqiong Chen 《先进技术聚合物》2014,25(10):1116-1121
The influence of nanoclay on the morphology and properties of the polypropylene (PP)/ethylene–octene block copolymer (EOC) blend with double compatibilizers of maleated PP (PP‐g‐MA) and maleated EOC (EOC‐g‐MA) was investigated and compared with the nanocomposites containing either PP‐g‐MA or EOC‐g‐MA as a compatibilizer. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized for morphological characterization in conjunction with dynamic mechanical thermal analysis, mechanical testing, and rheological evaluation of these nanocomposites. The results suggested that in the nanocomposite including both compatibilizers of PP‐g‐MA and EOC‐g‐MA, clay was dispersed as a mixed structure of intercalation and exfoliation in both phases of the polymer blend. Comparing the mechanical properties of the studied nanocomposite with nanocomposites of PP/EOC/PP‐g‐MA/clay and PP/EOC/EOC‐g‐MA/clay also indicated that the nanocomposite containing mixed compatibilizers displayed higher tensile modulus, tensile strength, and complex viscosity because of the better dispersion of clay in both phases. The results also confirmed the increased structural stability and reduced dispersed phase size of PP/EOC/PP‐g‐MA/EOC‐g‐MA blend in the presence of clay that proposed the compatibilization role of clay in this nanocomposite. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Nanocomposites of polypropylene (PP) were prepared by melt mixing using maleic anhydride modified polypropylene (PPg) and different organophilic montmorillonites (OMMT). The selected organo-modified clays differ in their initial particle size, amount and type of surfactant and/or their cation-exchange capacity. All composites have 80, 15 and 5 wt% of PP, PPg and OMMT, respectively. The materials were characterized using TGA, XRD, SEM and rotational rheometry. Cloisite 15A, Cloisite 93A, Nanomer I44 and a bentonite modified with octadecylammonium (B18) display intercalation and exfoliation after mixing and annealing and produce nanocomposites with different degrees of ‘solid-like’ rheological behavior. The composites based in Cloisite 15A and Nanomer I44, which use the same intercalant, show very similar phase structure and rheological response, regardless of the origin and initial characteristics of the clays. These nanocomposites are the most affected by the thermal history during rheological characterization in the molten state. On the other hand, Cloisite 10A and Cloisite 30B display collapse of the silicate layers after compounding with no evidence of exfoliation. 相似文献
17.
In the present study, a series of iPP/SiO2 nanocomposites, containing 1, 2.5, 5, 7.5, 10 and 15 wt% SiO2 nanoparticles, were prepared by melt mixing in a twin screw co-rotating extruder. Poly(propylene-g-maleic anhydride) copolymer (PP-g-MA) containing 0.6 wt% maleic anhydride content was added to all nanocomposites at three different concentrations, 1, 2.5 and 5 wt%, based on silica content. Mechanical properties such as tensile strength at break and Young’s modulus were found to increase and to be mainly affected by the content of silica nanoparticles as well as by the copolymer content. For the tensile strength at break as well as for yield point, a maximum was observed, corresponding to the samples containing 2.5-5 wt% SiO2. At higher concentrations, large nanosilica agglomerates are formed that have as a result a decrease in tensile strength. Young’s modulus increases almost linearly on the addition of SiO2, and takes values up to 60% higher than that of neat iPP. Higher concentrations of PP-g-MA resulted in a further enhancement of mechanical properties due to silica agglomerate reduction. This finding was verified from SEM and TEM micrographs. Evidently the surface silica hydroxyl groups of SiO2 nanoparticles react with maleic anhydride groups of PP-g-MA and lead to a finer dispersion of individual SiO2 nanoparticles in the iPP matrix. The enhanced adhesion in the interface of the two materials, as a result of the mentioned reaction, has been studied and proved by using several equations. The increased Vicat point of all nanocomposites, by increasing the PP-g-MA content, can also be mentioned as a positive effect. 相似文献
18.
Xinfeng Xu 《Polymer Degradation and Stability》2009,94(1):113-123
Organoclays with various contents of hydroxyl groups and absorbed ammonium were prepared and compounded with poly(ethylene terephthalate) (PET), forming PET/clay nanocomposites via melt extrusion. Dilute solution viscosity techniques were used to evaluate the level of molecular weight of PET/clay nanocomposites. Actually, a significant reduction in PET molecular weight was observed. The level of degradation depended on both the clay structure and surfactant chemistry in organoclays. The composites, based on clay with larger amount of hydroxyl groups on the edge of clay platelets, experienced much more degradation, because the hydroxyl groups acted as Brønsted acidic sites to accelerate polymer degradation. Furthermore, organoclays with different amounts of absorbed ammonium led to different extents of polymer degradation, depending upon the acidic sites produced by the Hofmann elimination reaction of ammonium. In addition, the composite with better clay dispersion state, which was considered as an increasing amount of clay surface and ammonium exposed to the PET matrix, experienced polymer degradation more seriously. To compensate for polymer degradation during melt extrusion, pyromellitic dianhydride (PMDA) was used as chain extender to increase the intrinsic viscosity of polymer matrix; more importantly, the addition of PMDA had little influence on the clay exfoliation state in PET/clay nanocomposites. 相似文献
19.
The crystallization behavior and fine structure of poly(butylene succinate) (PBS) nanocomposites with intercalation (30B20) and exfoliation (30BM20) morphologies, respectively, were investigated via isothermal crystallization testing and synchrotron small-angle X-ray scattering (SAXS). The dynamic viscosity of 30BM20 was markedly increased due to favorable interactions between the PBS matrix and the urethane group on the clay surface. However, 30BM20 showed similar crystallization rates to that of homo PBS because the surface urethane modification for 30BM20 precluded PBS matrix from the metallic group into clay to difficult in contact with each other, resulting in a reduced nucleation activity for the metallic group. SAXS profiles revealed that the long period and amorphous region size for 30B20 drastically decreased during isothermal crystallization. Meanwhile, 30BM20 was similar to those of homo PBS. This result also supports the above explanation for isothermal crystallization behavior. Considering all results in total, the introduction of a urethane modification considerably enhanced the physical properties of PBS but caused delayed crystallization rates. 相似文献
20.
We successfully modified organic clays containing the urethane group by introducing a covalent bond between the silanol group on the clay side and the hydroxyl group of organic modifier in the silicate layer using 1,6-diisocyanatohexane (HDI), namely surface-treated montmorillonite (30BM), to increase both basal spacing and the favorable interaction between clay and polymer. The effect of the surface urethane modification of clay on poly (butylene succinate) (PBS)/30BM nanocomposites was studied. The results of transmission electron microscopy micrographs at a 10-nm resolution and X-ray diffraction measurements allowed us to examine the degree of the high exfoliation and the effect of surface urethane modification on clay dispersibility. As results of high exfoliation, PBS/30BM nanocomposites not only exhibited the high thermal properties, but also showed a remarkable increase in physical properties (e.g., tensile strength, Young's modulus, elongation at break) due to enhanced affinity between the clay and PBS matrix. Over all, the results suggest that wide gallery spacing and the predominant affinity between PBS and clay must be considered simultaneously to increase the degree of exfoliation and physical properties as key factors. 相似文献