首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a class of nested iteration schemes for solving large sparse systems of linear equations with a coefficient matrix with a dominant symmetric positive definite part. These new schemes are actually inner/outer iterations, which employ the classical conjugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and symmetric positive definite splitting of the coefficient matrix. Convergence properties of the new schemes are studied in depth, possible choices of the inner iteration steps are discussed in detail, and numerical examples from the finite-difference discretization of a second-order partial differential equation are used to further examine the effectiveness and robustness of the new schemes over GMRES and its preconditioned variant. Also, we show that the new schemes are, at least, comparable to the variable-step generalized conjugate gradient method and its preconditioned variant.  相似文献   

2.
Summary In this paper we study linear stationary iterative methods with nonnegative iteration matrices for solving singular and consistent systems of linear equationsAx=b. The iteration matrices for the schemes are obtained via regular and weak regular splittings of the coefficients matrixA. In certain cases when only some necessary, but not sufficient, conditions for the convergence of the iterations schemes exist, we consider a transformation on the iteration matrices and obtain new iterative schemes which ensure convergence to a solution toAx=b. This transformation is parameter-dependent, and in the case where all the eigenvalues of the iteration matrix are real, we show how to choose this parameter so that the asymptotic convergence rate of the new schemes is optimal. Finally, some applications to the problem of computing the stationary distribution vector for a finite homogeneous ergodic Markov chain are discussed.Research sponsored in part by US Army Research Office  相似文献   

3.
For Toeplitz system of weakly nonlinear equations, by using the separability and strong dominance between the linear and the nonlinear terms and using the circulant and skew-circulant splitting (CSCS) iteration technique, we establish two nonlinear composite iteration schemes, called Picard-CSCS and nonlinear CSCS-like iteration methods, respectively. The advantage of these methods is that they do not require accurate computation and storage of Jacobian matrix, and only need to solve linear sub-systems of constant coefficient matrices. Therefore, computational workloads and computer storage may be saved in actual implementations. Theoretical analysis shows that these new iteration methods are local convergent under suitable conditions. Numerical results show that both Picard-CSCS and nonlinear CSCS-like iteration methods are feasible and effective for some cases.  相似文献   

4.
The multisplitting iteration method was presented by O’Leary and White [5] for solving large sparse linear systems on parallel multiprocessor system. In this paper, we further set up an asynchronous variant for the multisplitting iteration method with different weighting schemes studied by White [8]. Moreover, we establish a general convergence criterion for asynchronous iteration framework, and then prove the convergence of the new asynchronous multisplitting iteration method with different weighting schemes by making use of this general criterion.  相似文献   

5.
Three new iteration methods, namely the squared-operator method, the modified squared-operator method, and the power-conserving squared-operator method, for solitary waves in general scalar and vector nonlinear wave equations are proposed. These methods are based on iterating new differential equations whose linearization operators are squares of those for the original equations, together with acceleration techniques. The first two methods keep the propagation constants fixed, while the third method keeps the powers (or other arbitrary functionals) of the solution fixed. It is proved that all these methods are guaranteed to converge to any solitary wave (either ground state or not) as long as the initial condition is sufficiently close to the corresponding exact solution, and the time step in the iteration schemes is below a certain threshold value. Furthermore, these schemes are fast-converging, highly accurate, and easy to implement. If the solitary wave exists only at isolated propagation constant values, the corresponding squared-operator methods are developed as well. These methods are applied to various solitary wave problems of physical interest, such as higher-gap vortex solitons in the two-dimensional nonlinear Schrödinger equations with periodic potentials, and isolated solitons in Ginzburg–Landau equations, and some new types of solitary wave solutions are obtained. It is also demonstrated that the modified squared-operator method delivers the best performance among the methods proposed in this article.  相似文献   

6.
In this paper, the existence of solutions to a class of fractional differential equations $D_{0+}^{\alpha}u(t)=h(t)f(t, u(t), D_{0+}^{\theta}u(t))$ is obtained by an efficient and simple monotone iteration method. At first, the existence of a solution to the problem above is guaranteed by finding a bounded domain $D_M$ on functions $f$ and $g$. Then, sufficient conditions for the existence of monotone solution to the problem are established by applying monotone iteration method. Moreover, two efficient iterative schemes are proposed, and the convergence of the iterative process is proved by using the monotonicity assumption on $f$ and $g$. In particular, a new algorithm which combines Gauss-Kronrod quadrature method with cubic spline interpolation method is adopted to achieve the monotone iteration method in Matlab environment, and the high-precision approximate solution is obtained. Finally, the main results of the paper are illustrated by some numerical simulations, and the approximate solutions graphs are provided by using the iterative method.  相似文献   

7.
Using the forms of Newton iterative function, the iterative function of Newton's method to handle the problem of multiple roots and the Halley iterative function, we give a class of iterative formulae for solving equations in one variable in this paper and show that their convergence order is at least quadratic. At last we employ our methods to solve some non-linear equations and compare them with Newton's method and Halley's method. Numerical results show that our iteration schemes are convergent if we choose two suitable parametric functions λ(x) and μ(x). Therefore, our iteration schemes are feasible and effective.  相似文献   

8.
分块交替分裂隐式迭代方法是求解具有鞍点结构的复线性代数方程组的一类高效迭代法.本文通过预处理技巧得到原方法的一种加速改进方法,称之为预处理分块交替分裂隐式迭代方法·理论分析给出了新方法的收敛性结果.对于一类时谐涡旋电流模型问题,我们给出了若干满足收敛条件的迭代格式.数值实验验证了新型算法是对原方法的有效改进.  相似文献   

9.
The method of Padé matrix iteration is commonly used for computing matrix sign function and invariant subspaces of a real or complex matrix. In this paper, a detailed rounding error analysis is given for two classical schemes of the Pad’e matrix iteration, using basic matrix floating point arithmetics. Error estimations of computing invariant subspaces by the Padé sign iteration are also provided. Numerical experiments are given to show the numerical behaviors of the Padé iterations and the corresponding subspace computation.   相似文献   

10.
一类带非单调线搜索的信赖域算法   总被引:1,自引:0,他引:1  
通过将非单调Wolfe线搜索技术与传统的信赖域算法相结合,我们提出了一类新的求解无约束最优化问题的信赖域算法.新算法在每一迭代步只需求解一次信赖域子问题,而且在每一迭代步Hesse阵的近似都满足拟牛顿条件并保持正定传递.在一定条件下,证明了算法的全局收敛性和强收敛性.数值试验表明新算法继承了非单调技术的优点,对于求解某...  相似文献   

11.
In this paper we prove under certain weak conditions that two classes of implicit difference schemes for the generalized non-linear schrödinger system are convergent and that an iteration method for the corresponding non-linear difference equation is convergent. Therefore, quite a complete theoretical foundation of implicit schemes for the generalized non-linear Schrödinger system is established in this paper.  相似文献   

12.
《Optimization》2012,61(6):867-881
For the numerical solution of unilateral variational inequalities two iterative schemes are developed which provide approximations from below resp. from above. Both schemes are based on some kind of active set strategy and require the solution of an algebraic system of equations at each iteration step which is done by means of multigrid techniques. Convergence results are established and illustrated by some numerical results for the elastic-plastic torsion problem  相似文献   

13.
Summary High accuracy alternating direction implicit difference schemes for the heat equation, LAPLACE's equation and the biharmonic equation are considered. In addition to surveying the existing methods, several new methods are introduced. Sequences of iteration parameters are obtained for the elliptic problems and a numerical example is given.  相似文献   

14.
As a continuation of my paper “New techniques for the analysis of linear interval equations” [Linear Algebra Appl. 58:273–325 (1984)], the interrelation between interval Gauss elimination and interval iteration is investigated. Main results are a new existence theorem for interval Gauss elimination (in the guise of a perturbation theorem), a convergence and comparison theorem for a general family of interval iteration schemes, and a new method for the calculation of the hull of the solution set of linear interval equations with inverse positive coefficient matrix.  相似文献   

15.
The simulation of slowly varying transient electric high-voltage fields and magnetic fields requires the repeated and successive solution of high-dimensional linear algebraic systems of equations with identical or near-identical system matrices and different right-hand side vectors. For these solution processes which are required within implicit time integration schemes and nonlinear (quasi-)Newton–Raphson methods an iterative multiple right-hand side (mrhs) scheme is used which recycles vector subspaces resulting from previous preconditioned conjugate gradient iteration runs. The combination of this scheme with a subspace projection extrapolation start value generation scheme is discussed. Numerical results for three-dimensional electric and magnetic field simulations are presented and the efficiency of the new schemes re-using eigenvector information from previous iteration processes with different tolerance criteria are compared to those of standard conjugate gradient iterations.  相似文献   

16.
The purpose of this paper is to investigate explicit iteration schemes for minimization problems arising from image denoising. In particular, we propose explicit iteration schemes based on matrix splitting. When the matrix splitting is done by the symmetric Gauss–Seidel method, we establish convergence of the scheme with no restriction on the step size of the iteration. If the matrix splitting is done by the Gauss–Seidel method, we show that the iteration scheme still converges, provided the step size of each iteration is sufficiently small.  相似文献   

17.
In most of the earlier research for multiple zeros, in order to obtain a new iteration function from the existing scheme, the usual practice is to make no change at the first substep. In this paper, we explore the idea that what are the advantages if the flexibility of choice is also given at the first substep. Therefore, we present a new two-point sixth-order scheme for multiple roots (m>1). The main advantages of our scheme over the existing schemes are flexibility at both substeps, simple body structure, smaller residual error, smaller error difference between two consecutive iterations, and smaller asymptotic error constant. The development of the scheme is based on midpoint formula and weight functions of two variables. We compare our methods with the existing methods of the same order with real-life applications as well as standard test problems. From the numerical results, we find that our methods can be considered as better alternates for the existing methods of the same order. Finally, dynamical study of the proposed schemes is presented that confirms the theoretical results.  相似文献   

18.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear differential equations of fractional order. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. This paper will present a numerical comparison between the two methods and a conventional method such as the fractional difference method for solving linear differential equations of fractional order. The numerical results demonstrates that the new methods are quite accurate and readily implemented.  相似文献   

19.
In this article, three difference schemes of the Ginzburg‐Landau Equation in two dimensions are presented. In the three schemes, the nonlinear term is discretized such that nonlinear iteration is not needed in computation. The plane wave solution of the equation is studied and the truncation errors of the three schemes are obtained. The three schemes are unconditionally stable. The stability of the two difference schemes is proved by induction method and the time‐splitting method is analysized by linearized analysis. The algebraic multigrid method is used to solve the three large linear systems of the schemes. At last, we compute the plane wave solution and some dynamics of the equation. The numerical results demonstrate that our schemes are reliable and efficient. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 507–528, 2011py; 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 507–528, 2011  相似文献   

20.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号