首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肖贤波  李小毛  周光辉 《物理学报》2007,56(3):1649-1654
理论上研究Rashba自旋-轨道相互作(SOI)量子线在外电磁波辐照下的电子自旋极化输运性质.在自由电子模型下利用散射矩阵方法,发现当Rashba SOI较弱时,自旋极化率与外电磁场频率和电子入射能量无关,而当Rashba SOI较强时,自旋极化率则强烈依赖于外场频率和电子入射能量,其物理根源是Rashba SOI使子带混合引起的.此外,当电子的入射能量增加到打开另一通道阈值时,电子的透射率出现一个反常的台阶结构,这来源于电子与光子的非弹性散射而使电子在子带间的跃迁. 关键词: 量子线 电磁波 自旋极化输运 散射矩阵  相似文献   

2.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

3.
We theoretically study the spin properties of two interacting electrons confined in the IhAs parallel coupled quantum dots (CQDs) with spin-orbit interactions (SOI) by exact diagonalization method. Through the SOI induced spin mixing of the singlet and the triplet states, we show the different spin properties for the weak and strong SOI. We investigate the coherent singlet-triplet spin oscillations of the two electrons under the SOI, and demonstrate the detailed behaviors of the spin oscillations depending on the SOI strengths, the inter-dot separations and the external magnetic fields. To better understand the underlying physics of the spin dynamics, we introduce a four-level model Hamiltonian for both weak and strong SOI, and find that the SOI induced in plane effective magnetic fields can be quantitatively extracted from the two-electron excitation energy spectra.  相似文献   

4.
We study the spin transport in bilayer graphene nanoribbons (BGNs) in the presence of Rashba spin-orbit interaction (SOI) and external gate voltages. It is found that the spin polarization can be significantly enhanced by the interlayer asymmetry or longitudinal mirror asymmetry produced by external gate voltages. Rashba SOI alone in BGNs can only generate current with spin polarization along the in-plane y direction, but the polarization components can be found along the x, y and z directions when a gate voltage is applied. High spin polarization with flexible orientation is obtained in the proposed device. Our findings shed new light on the generation of highly spin-polarized current in BGNs without external magnetic fields, which could have useful applications in spintronics device design.  相似文献   

5.
Spin-dependent electron transport in a periodically stubbed quantum wire in the presence of Rashba spin-orbit interaction (SOI) is studied via the nonequilibrium Green’s function (GF) method combined with the Landauer-Büttiker formalism. By comparing with a straight Rashba quantum wire, the magnitude of spin conductance can be enhanced obviously. In addition, the charge and spin switching can also be found in the considered system. The mechanism of these transport properties is revealed by analyzing the total charge density and spin-polarized density distributions in the stubbed quantum wire. Furthermore, periodic spin-density islands with high polarization are also found inside the stubs, owing to the interaction between the charge density islands and the Rashba SOI-induced effective magnetic field. These interesting findings may be useful in further understanding of the transport properties of low-dimensional systems and in devising an all-electrical multifunctional spintronic device based on the proposed structure.  相似文献   

6.
余欣欣  谢月娥  欧阳滔  陈元平 《中国物理 B》2012,21(10):107202-107202
By the Green’s function method,we investigate spin transport properties of a zigzag graphene nanoribbon superlattice(ZGNS) under a ferromagnetic insulator and edge effect.The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy,which leads to spin-polarized transport in structure.Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy.The location and width of the miniband are associated with the geometry of the ZGNS.In the optimal structure,the spin-up and spin-down minibands can be separated completely near the Fermi energy.Therefore,a wide,perfect spin polarization with clear stepwise pattern is observed,i.e.,the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.  相似文献   

7.
We present an experimentalist's view of the theory and published data for the magnetoresistance (MR) of a multilayer composed of alternating ferromagnetic (F) and non-magnetic (N) metals measured with current flow perpendicular to the layer planes (CPP-MR). We explain the advantages of this geometry for determining the fundamental quantities underlying spin-polarized transport, describe the different techniques developed to measure the CPP-MR, summarize the salient features of the models used to analyze experimental data, and describe tests of those models. We then review what has been learned so far about spin-dependent scattering anisotropy and spin relaxation in F-metals and at F/N interfaces, specific resistances of F/N interfaces, the temperature dependence of spin-polarized transport parameters, and mixing of the spin-polarized electron currents. After a brief overview of some new directions, we conclude with a list of questions still to be answered.  相似文献   

8.
We calculate the dephasing time tau(phi)(B) of an electron in a two-dimensional system with a Rashba spin-orbit interaction, spin-polarized by an arbitrarily large magnetic field parallel to the layer. tau(phi)(B) is estimated from the logarithmic corrections to the conductivity within a perturbative approach that assumes weak, isotropic disorder scattering. For any value of the magnetic field, the dephasing rate changes with respect to its unpolarized-state value by a universal function whose parameter is 2E(Z)/E(SOI) (E(Z) is the Zeeman energy, while E(SOI) is the spin-orbit interaction), confirming the experimental report published in Phys. Rev. Lett. 94, 186805 (2005). In the high-field limit, when 2E(Z) > E(SOI), the dephasing rate saturates and reaches asymptotically to a value equal to half the spin-relaxation rate.  相似文献   

9.
We theoretically investigate the spin-polarized transport properties of the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We calculate the density of states and the liner conductance in this system with both parallel and antiparallel lead-polarization alignments, and our results show that the transport properties of this system depend on both the tunnelling strength between the two dots and the spin-polarized strength p. This system is a possible candidate for spin valve transistors in the spintronics.  相似文献   

10.
We analyze the transport through asymmetric double quantum dots with an inhomogeneous Zeeman splitting in the presence of crossed dc and ac magnetic fields.A strong spin-polarized current can be obtained by changing the dc magnetic field.It is mainly due to the resonant tunnelling.But for the ferromagnetic right electrode,the electron spin resonance also plays an important role in transport.We show that the double quantum dots with three-level mixing under crossed dc and ac magnetic fields can act not only as a bipolar spin filter but also as a spin inverter under suitable conditions.  相似文献   

11.
We address the quantum capacitance of a bilayer graphene device in the presence of Rashba spin–orbit interaction (SOI) by applying external magnetic fields and interlayer biases. Quantum capacitance reflects the mixing of the spin-up and spin-down states of Landau levels and can be effectively modulated by the interlayer bias. The interplay between interlayer bias and Rashba SOI strongly affects magnetic oscillations. The typical beating pattern changes tuned by Rashba SOI strength, interlayer bias energy, and temperature are examined as well.  相似文献   

12.
Transient spin gratings are used to study spin diffusion in lightly n-doped GaAs quantum wells at low temperatures. The spin grating is shown to form in the excess electrons from doping, providing spin relaxation and transport properties of the carriers most relevant to spintronic applications. We demonstrate that spin diffusion of the these carriers is accelerated by increasing the density or energy of the optically excited carriers. These results can be used to better understand and even control spin transport in experiments that optically excite spin-polarized carriers.  相似文献   

13.
黄耀清  郝成红  郑继明  任兆玉 《物理学报》2013,62(8):83601-083601
利用过渡金属掺杂的硅基团簇, 构建了一种自旋分子结; 并利用第一性原理方法, 对其电子自旋极化输运性质进行了研究. 计算表明, 通过过渡金属掺杂可以有效地产生自旋极化电流, 磁性金属Fe和非磁性金属Cr和Mn掺杂的体系呈现出较明显的自旋极化透射现象, 但分子结的自旋极化输运能力与团簇孤立状态下的磁矩无一致性.从Sc到Ni的掺杂, 体系的自旋极化透射能力先增大后迅速减小, 在Fe掺杂的Si12团簇中出现最大值. 关键词: 硅团簇 自旋极化输运 密度泛函理论 非平衡格林函数  相似文献   

14.
We study the spin-polarized transport induced by photoirradiation in zigzag silicene nanosystem, based on tight-binding approach, Green's function method and Landauer–Büttiker formula. By applying strong circular polarized light, silicene nanosystem can be transformed into a quantum Hall insulator, where the spin-down subband is gapped while the spin-up subband persists gapless edge state. Therefore, the dc conductance is dominated by the spin-up electrons, and the spin polarization can reach almost 100% around the Fermi energy. The spatial-resolved local density of states confirm that the spin-up electrons transport at two edges of the nanosystem in opposite current directions. Furthermore, because of the topological origin of the edge state, the spin-polarized transport is very robust against the size change of the nanosystem.  相似文献   

15.
In the framework of the Landauer-Büttiker formalism, we investigate coherent spin transport through a transverse-biased magnetic zigzag-edge graphene nanoribbon, with a temperature difference applied between the source and the drain. It is shown that a critical source temperature is needed to generate a spin-polarized current due to the presence of a forbidden transport gap. The magnitude of the obtained spin polarization exceeds 90% in a wide range of source temperatures, and its polarization direction could be changed by reversing the transverse electric field. We also find that, at fixed temperature difference, the spin-polarized current undergoes a transition from increasing to decreasing as the source temperature rises, which is attributed to the competition between the excited energy of electrons and the relative temperature difference. Moreover, by modulating the transverse electric field, the source temperature and the width of the ribbon, we can control the device to work well for generating a highly spin-polarized current.  相似文献   

16.
Ning Xu 《Physics letters. A》2018,382(4):220-223
The spin-polarized transport properties of multiterminal silicene nanodevices are studied using the tight binding model and Landauer–Buttier approach. We propose a four-terminal 2-shaped junction device and two types of three-terminal T-shaped junction devices, which are made of the crossing of a zigzag and an armchair silicene nanoribbon. If the electrons are injected into the metallic lead, the near-perfect spin polarization with 100% around the Fermi energy can be achieved easily at the other semiconducting leads. Thus the multiterminal silicene nanodevices can act as controllable spin filters.  相似文献   

17.
In this paper, we apply Büttiker's gauge invariant, charge conservation, nonlinear transport theory to explore the spin-polarized tunneling of ferromagnet/insulator (semiconductor) single and double junctions. The Green function of spin-polarized tunneling is calculated by the tight-binding approximation method. The energy and the angle (between the molecular field and the vertical axis) dependences of the weakly nonlinear dc transport coefficient and the linear low frequency ac transport coefficient are investigated. The ac tunneling magnetoresistance is also discussed. Received 1st September 2000 and Received in final form 5 December 2000  相似文献   

18.
金奎娟  韩鹏  陆珩  吕惠宾  杨国桢 《物理》2007,36(5):365-369
文章介绍了一个基于弱Hund耦合规则以及载流子漂移扩散机制所提出的关于钙钛矿氧化物p-n异质结构的自旋极化输运机制的物理模型.该理论不仅可以很好地解释由具有负磁阻效应的La0.9Sr0.1MnO3(LSMO)与非磁性的SrNb0.01Ti0.99O3(SNTO)所组成的异质结中所存在的正磁电阻效应,同时揭示了该体系中LSMO在界面区域的载流子与远离界面区域的载流子具有不同的自旋极化方向.这一结果将为理解钙钛矿氧化物异质结及多层膜的自旋极化输运机制开辟了一条新的途径.  相似文献   

19.
Strong spin–orbit interaction (SOI) in graphene grown on tungsten disulfide (SW2) has been recently observed, leading to energy gap opening by SOI. Energy gap in graphene may also be induced by sublattice symmetry breaking (SSB) where energy level in A-sublattice is not equal to that in B-sublattice. SSB-gap may be produced by growing graphene on hexagonal boron nitride or silicon carbide. In this work, we investigate transport property in a SOI/SSB/SOI gapped graphene junction, focusing the effect of interplay of SOI and SSB. We find that, lattice-pseudospin polarization (L-PSP) can be controlled perfectly from +100% to −100% by gate voltage. This is due to the fact that in graphene grown on SW2, the carriers carry lattice-pseudospin degree of freedom “up and down”. The SSB-gapped graphene exhibits pseudo-ferromagnetism to play the role of lattice-pseudospin filtering barrier. It is also found that the SOI and SSB-gaps in graphene may be measured by characteristic of L-PSP in the junction. The proposed controllable-lattice-pseudospin currents may be applicable for graphene-based pseudospintronics.  相似文献   

20.
《Physics letters. A》2019,383(17):2069-2075
By using density functional theory in combination with non-equilibrium Green's function method, we have investigated the spin-polarized electronic transport properties of four DNA base devices, namely, adenine (A), cytosine (C), guanine (G) and thymine (T). The results show the spin-polarized transport properties can be effectively regulated by adopting different bases, and thymine based device can exhibit high-efficiency spin-filtering, negative differential resistance, spin rectifying behaviors and switching effect by tuning the external magnetic field. We find that the variation in the degree of localization of the frontier molecular orbitals at different biases is responsible for these interesting phenomena. These effects can be explained by the spin-resolved transmission spectrum and the spatial distribution of molecular orbitals around the Fermi level. Our results suggest that thymine base holds great potential application in designing multi-functional spin molecular device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号