首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable batteries(ASIBs),which operate in aqueous electrolytes,are cheaper,safer,and more ionically conductive than batteries that operate in conventional organic electrolytes;furthermore,they are suitable for grid-scale energy storage applications.As electrode materials for storing Na~+ ions in ASIBs,a variety of multifunctional metal-organic frameworks(MOFs) have demonstrated great potential in terms of having porous 3 D crystal structures,compatibility with aqueous solutions,long cycle lives(≥1000 cycles),and ease of synthesis.The present review describes MOF-derived technologies for the successful application of MOFs to ASIBs and suggests future challenges in this area of research based on the current understanding.  相似文献   

2.
Tin oxide, SnO2, is a suitable anode for both lithium-ion and sodium-ion batteries (LIBs and SIBs) unlike graphite and silicon, which are only suitable anodes for LIB. SnO2 has garnered much attention because of its high theoretical capacities (LIB = 1494 mA h g?1 and SIB = 1378 mA h g?1). However, the commercialization of SnO2 anodes is still hugely challenged because these anodes suffer from large volume expansion caused by lithiation/delithiation or sodiation/desodiation during cycling, leading to severe capacity fading. The adopted strategies to solve these problems are nanosizing that greatly improves the structural stability of the material and helps to have fast reaction kinetics. Synthesizing nanocomposite of SnO2 nanoparticles with nanoporous carbonaceous materials to buffer the volume expansion, enhance cycling stability; create oxygen deficiency to improve intrinsic conductivity. In this review, the recent research trends on SnO2 as anode for both LIB and SIB systems are presented.  相似文献   

3.
The lead–acid battery recycling industry is very well established, but the conventional pyrometallurgical processes are far from environmentally benign. Hence, recent developments of lead–acid battery recycling technologies have focused on low-temperature (electro)hydrometallurgical processes, the subject of this review, covering modified electrolytes, improved reaction engineering, better reactor design and control of operating conditions.  相似文献   

4.
Cathode material LiFe0.7?V0.2PO4/C is successfully synthesized by multistep sintering through carbon thermal reaction including 650 °C for 10 h and 750 °C for 6 h. The crystal structure and surface morphology of the synthesized materials are characterized by X-ray diffractometer and scanning electron microscope, respectively. Cycle voltammetry, electrochemical impedance spectroscopy, and charge–discharge test are used to investigate the electrochemical performances of these samples. The results revealed that the synthesized LiFe0.7?V0.2PO4/C material simultaneously contains olivine structure LiFePO4 and monoclinic structure Li3V2(PO4)3. It shows improved conductivity, Li-ion diffusion coefficient, excellent charge/discharge performance, and reversibility due to both the incorporation of Li3V2(PO4)3 fast ion conductor and the employed multistep sintering. The initial discharge specific capacities of LiFe0.7?V0.2PO4/C by multistep sintering are 167.8, 154.7, and 140.8 mAh g?1 at 0.5, 1, and 2 C, respectively. After a total of 230 cycles at different rates, the sample still shows good performances. After 100 cycles at 2 C, the capacity retention is 99.1 %, and the capacity is 139.6 mAh g?1. The LiFe0.7?V0.2PO4/C material synthesized by this method can be used as a cathode material for advanced lithium-ion batteries.  相似文献   

5.
采用高温固相反应,以NH4VO3为钒源合成了化学计量式为(1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C(x=0,0.1,0.2,0.25,1)的钒改性磷酸锰铁锂正极材料.电化学测试表明钒改性能明显提高磷酸锰铁锂材料的充放电性能,其中x=0.2时得到的0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C(标记为LFMP-LVP/C)材料电化学性能最好,其0.1C倍率时的放电比容量为141mAh·g-1.X射线衍射(XRD)分析指出LFMP-LVP/C材料的微观结构为橄榄石型LiFe0.5Mn0.5PO4/C和NASICON型Li3V2(PO4)3组成的双相结构.能量色射X射线谱(EDS)分析结果指出,Fe、Mn、V、P元素在所合成材料中的分布非常均匀,表明所制备材料成分的均一性.Li3V2(PO4)3改性使材料的电导率明显提高.LiFe0.5Mn0.5PO4的电导率为1.9×10-8S·cm-1,而LFMP-LVP材料电导率提高到2.7×10-7S·cm-1.与纯Li3V2(PO4)3的电导率(2.3×10-7S·cm-1)相近.电化学测试表明钒改性使LFMP-LVP/C材料充放电过程电极极化明显减小,从而电化学性能得到显著提高.本文工作表明Li3V2(PO4)3改性可成为提高橄榄石型磷酸盐锂离子电池正极材料电化学性能的一种有效方法.  相似文献   

6.
采用高温固相反应,以NH4VO3为钒源合成了化学计量式为(1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C (x=0,0.1,0.2,0.25,1)的钒改性磷酸锰铁锂正极材料.电化学测试表明钒改性能明显提高磷酸锰铁锂材料的充放电性能,其中x=0.2时得到的0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C(标记为LFMP-LVP/C)材料电化学性能最好,其0.1C倍率时的放电比容量为141 mAh·g-1.X射线衍射(XRD)分析指出LFMP-LVP/C材料的微观结构为橄榄石型LiFe0.5Mn0.5PO4/C和NASICON型Li3V2(PO4)3组成的双相结构.能量色射X射线谱(EDS)分析结果指出,Fe、Mn、V、P元素在所合成材料中的分布非常均匀,表明所制备材料成分的均一性.Li3V2(PO4)3改性使材料的电导率明显提高.LiFe0.5Mn0.5PO4的电导率为1.9×10-8 S· cm-1,而LFMP-LVP材料电导率提高到2.7×10-7 S·cm-1.与纯Li3V2(PO4)3的电导率(2.3×10-7 S·cm-1)相近.电化学测试表明钒改性使LFMP-LVP/C材料充放电过程电极极化明显减小,从而电化学性能得到显著提高.本文工作表明Li3V2(PO4)3改性可成为提高橄榄石型磷酸盐锂离子电池正极材料电化学性能的一种有效方法.  相似文献   

7.
Recent developments in the synthesis of nanostructured cathode materials are reviewed for the two prominent compounds LiFePO4 and LiNi0.5Mn1.5O4, and own results on LiFePO4 and LiNi0.5Mn1.5O4 with different microstructure are presented. The synthesis of LiFePO4 composites with porous carbons and the scale up of their synthesis is reported, as well as of nanoporous materials. In the case of LiNi0.5Mn1.5O4 the formation of deteriorating cathode surface films is studied with thin film electrodes and ToF-SIMS depth profiling.  相似文献   

8.
In this paper, porous carbon was synthesized by an activation method, with phenolic resin as carbon source and nanometer calcium carbonate as activating agent. Sulfur–porous carbon composite material was prepared by thermally treating a mixture of sublimed sulfur and porous carbon. Morphology and electrochemical performance of the carbon and sulfur–carbon composite cathode were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and galvanostatic charge–discharge test. The composite containing 39 wt.% sulfur obtained an initial discharge capacity of about 1,130 mA?h g?1 under the current density of 80 mA?g?1 and presented a long electrochemical stability up to 100 cycles.  相似文献   

9.
The phase equilibria occurring in the YPO4–Rb3PO4 system were investigated by thermoanalytical methods, X-ray powder diffraction, and ICP-OES. On the basis of the obtained results, its phase diagram is proposed. It was found that the system includes two intermediate compounds Rb3Y(PO4)2 and Rb3Y2(PO4)3. The Rb3Y(PO4)2 compound melts congruently at 1300 °C. The Rb3Y2(PO4)3 orthophosphate was previously unknown. This intermediate compound is high-temperature unstable and decomposes within the temperature range 1300–1330 °C to YPO4 and Rb3Y(PO4)2. The decomposition process is irreversible. It was found that the Rb3Y2(PO4)3 orthophosphate is isostructural with Rb3Yb2(PO4)3 and crystallizes in the cubic system (a = 1.70226 nm).  相似文献   

10.
The phase equilibria occurring in the ErPO4–K3PO4 system were investigated by the thermal analysis, FTIR, and X-ray powder diffraction methods. On the basis of obtained results, the related phase diagram is proposed. This system includes one intermediate compound, K3Er(PO4)2; the double phosphate melts incongruently at 1355 °C and occurs in two polymorphic forms; transformation β/α-K3Er(PO4)2 proceeds at 420 °C. The eutectic occurs at the composition of 58.5 wt% K3PO4, 41.5 wt% ErPO4 at 1317 °C.  相似文献   

11.
The system Rb3PO4–Ba3(PO4)2 was investigated by thermoanalytical methods, X-ray powder diffraction, ICP, and FT-IR. On the basis of the obtained results its phase diagram was proposed. For this system with one intermediate compound, BaRbPO4, we found that this compound melts congruently at 1700 °C, exhibits a polymorphic transition at 1195 °C and is high-temperature unstable. Also, the intermediate compound was subject to gradual decomposes to Ba3(PO4)2 (the solid phase) and vaporization (with conversion of phosphorus and rubidium oxides into vapor phase). We also found that Rb3PO4 melts congruently at 1450 °C and shows a polymorphic transition at 1040 °C. Regarding Ba3(PO4)2, we have confirmed that it melts congruently at 1605 °C and exhibits a polymorphic transition at 1360 °C.  相似文献   

12.
Journal of Solid State Electrochemistry - Sodium-ion batteries have emerged as an exciting alternative to commercially dominant lithium-ion batteries for electric vehicles and other applications....  相似文献   

13.
Titania–sulfur (TiO2–S) composite cathode materials were synthesized for lithium–sulfur batteries. The composites were characterized and examined by X-ray diffraction, nitrogen adsorption/desorption measurements, scanning electron microscopy, and electrochemical methods, such as cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. It is found that the mesoporous TiO2 and sulfur particles are uniformly distributed in the composite after a melt-diffusion process. When evaluating the electrochemical properties of as-prepared TiO2–S composite as cathode materials in lithium–sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The results showed that an initial discharge specific capacity of 1,460 mAh/g at 0.2 C and capacity retention ratio of 46.6 % over 100 cycles of composite cathode, which are higher than that of pristine sulfur. The improvements of electrochemical performances were due to the good dispersion of sulfur in the pores of TiO2 particles and the excellent adsorbing effect on polysulfides of TiO2.  相似文献   

14.
Li4Mn0.5Ti0.5O4合成与鉴定   总被引:4,自引:0,他引:4  
Li4Mn0.5Ti0.5O4合成与鉴定;LiMnTi复合氧化物;尖晶石型结构;离子筛;离子交换;锂  相似文献   

15.
Porous Sn–Co–P alloy with reticular structure were prepared by electroplating using copper foam as current collector. The structure and electrochemical performance of the electroplated porous Sn–Co–P alloy electrodes were investigated in detail. Experimental results illustrated that the porous Sn–Co–P alloy consists of mainly SnP0.94 phase with a minor quantity of Sn and Co3Sn2. Galvanostatic charge–discharge tests of porous Sn–Co–P alloy electrodes confirmed its excellent performances: at 50th charge–discharge cycle, the discharge specific capacity is 503 mAh g?1 and the columbic efficiency is as high as 99%. It has revealed that the porous and multi-phase composite structure of the alloy can restrain the pulverization of electrode in charge/discharge cycles, and accommodate partly the volume expansion and phase transition, resulting in good cycleability of the electrode.  相似文献   

16.
Spinel LiNi0.5Mn1.5O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials have been successfully synthesized by the sol–gel method using citric acid as a chelating agent. The structure and electrochemical performance of these as-prepared powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the galvanostatic charge–discharge test in detail. XRD results show that there is a small Li y Ni1-y O impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5Mn1.5O4, and LiMn1.4Cr0.2Ni0.4O4 has high phase purity, and the powders are well crystallized. SEM indicates that LiMn1.4Cr0.2Ni0.4O4 has a slightly smaller particle size and a more regular morphological structure with narrow size distribution than those of LiNi0.5Mn1.5O4. Galvanostatic charge–discharge testing indicates that the initial discharge capacities of LiMn1.4Cr0.2Ni0.4O4 and LiNi0.5Mn1.5O4 cycled at 0.15 C are 129.6 and 130.2 mAh g−1, respectively, and the capacity losses compared to the initial value, after 50 cycles, are 2.09% and 5.68%, respectively. LiMn1.4Cr0.2Ni0.4O4 cathode has a higher electrode coulombic efficiency than that of the LiNi0.5Mn1.5O4 cathode, implying that Ni and Cr dual substitution is beneficial to the reversible intercalation and de-intercalation of Li+.  相似文献   

17.
A new ternary Sn–Ni–P alloy rods array electrode for lithium-ion batteries is synthesized by electrodeposition with a Cu nanorods array structured foil as current collector. The Cu nanorods array foil is fabricated by heat treatment and electrochemical reduction of Cu(OH)2 nanorods film, which is grown directly on Cu substrate through an oxidation method. The Sn–Ni–P alloy rods array electrode is mainly composed of pure Sn, Ni3Sn4 and Ni–P phases. The electrochemical experimental results illustrate that the Sn–Ni–P alloy rods array electrode has high reversible capacity and excellent coulombic efficiency, with an initial discharge capacity and charge capacity of 785.0 mAh g?1 and 567.8 mAh g?1, respectively. After the 100th discharge–charge cycling, capacity retention is 94.2% with a value of 534.8 mAh g?1. The electrode also performs with an excellent rate capacity.  相似文献   

18.
Because of the low price and abundant reserves of sodium compared with lithium, the research of sodium-ion batteries(SIBs) in the field of large-scale energy storage has returned to the research spotlight. Layered oxides distinguish themselves from the mains cathode materials of SIBs owing to their advantages such as high specific capacity, simple synthesis route, and environmental benignity. However, the commercial development of the layered oxides is limited by sluggish kinetics, complex phase...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号