首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles (NPs) with ternary components of polyethyleneimine (PEI), poly-(γ-glutamic acid) (γ-PGA), and poly(lactide-co-glycolide) (PLGA) were applied to carry and release saquinavir (SQV). Hydrophobic SQV was encapsulated in the particle core composed of PLGA to form SQV-PLGA NPs, and the surface of SQV-PLGA NPs was grafted successively with hydrophilic γ-PGA and PEI (PEI/γ-PGA/SQV-PLGA NPs). The morphological images revealed that PEI/γ-PGA/SQV-PLGA NPs were spheroid-like, in general. An increase in the concentration of didecyl dimethylammonium bromide and a reduction in the dose of SQV enhanced the entrapment efficiency of SQV in PLGA NPs. In addition, an increment in the molecular weight of γ-PGA reduced the grafting efficiency of PEI on γ-PGA/SQV-PLGA NPs. An increase in the weight percentage of PEI enhanced the average particle diameter. However, the grafting efficiency of PEI on γ-PGA/SQV-PLGA NPs and the dissolution rate of SQV from PEI/γ-PGA/SQV-PLGA NPs reduced when the weight percentage of PEI increased. PEI/γ-PGA/SQV-PLGA NPs are an innovative drug delivery system and can be used for antiretroviral trials.  相似文献   

2.
A simple and green method for the controllable synthesis of core–shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ∼240 nm were coated with a polydopamine shell layer with a tunable thickness of 15–45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core–shell NPs as a versatile platform for potential applications.  相似文献   

3.
Optically active core/shell nanoparticles (NPs) were prepared by combining aqueous catalytic microemulsion polymerization of a monosubstituted N-propargylsulfamide monomer and free-radical polymerization of two vinyl monomers (MMA and BA) in one specific system. In such novel NPs, poly(N-propargylsulfamide) forming the cores took helical conformations of a predominant handedness, endowing the NPs with interesting optical activities. The use of two vinyl monomers simultaneously in one system led to NPs with desirable dispersity and morphology. From the NP emulsions, optically active composite films were prepared with poly(vinyl alcohol) as supporting material, attesting to the potential applications of the optically active core/shell NPs. Following the strategy, other novel core/shell NPs and advanced materials can be anticipated. The current investigations provide large possibilities to realize practical applications of highly interesting helical polyacetylenes.  相似文献   

4.
A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion‐like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core–shell NPs, which differs from the traditional seed‐mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields. Importantly, higher catalytic efficiency of dandelion‐like Pd@Pt core–shell NPs was observed for the olefin reduction than commercially available Pt black, Pd NPs, and physically admixed Pt black and Pd NPs. This superior catalytic behavior is not only due to larger surface area and synergistic effects but also to the unique micro–mesoporous structure with significant contribution of mesopores with sizes of several tens of nanometers.  相似文献   

5.
The synthesis of silica‐based yolk–shell nanospheres confined with ultrasmall platinum nanoparticles (Pt NPs) stabilized with poly(amidoamine), in which the interaction strength between Pt NPs and the support could be facilely tuned, is reported. By ingenious utilization of silica cores with different surface wettability (hydrophilic vs. ‐phobic) as the adsorbent, Pt NPs could be confined in different locations of the yolk–shell nanoreactor (core vs. hollow shell), and thus, exhibit different interaction strengths with the nanoreactor (strong vs. weak). It is interesting to find that the adsorbed Pt NPs are released from the core to the hollow interiors of the yolk–shell nanospheres when a superhydrophobic inner core material (SiO2?Ph) is employed, which results in the preparation of an immobilized catalyst (Pt@SiO2?Ph); this possesses the weakest interaction strength with the support and shows the highest catalytic activity (88 500 and 7080 h?1 for the hydrogenation of cyclohexene and nitrobenzene, respectively), due to its unaffected freedom of Pt NPs for retention of the intrinsic properties.  相似文献   

6.
This paper describes the use of reversed-phase liquid chromatography (RPLC) to rapidly characterize Au/Pt core/shell nanoparticles (NPs) produced through seed-assisted synthesis. We monitored the sizes of Au/Pt core/shell NPs by using a porous silica-based RPLC column (pore size: ca. 100 nm) and 30 mM sodium dodecyl sulfate in deionized water as the mobile phase; the plot of the retention time with respect to the logarithm of the size of the Au NPs was linear (R2 = 0.997) for diameters falling in the range from 5.3 to 40.1 nm; from five consecutive runs, the relative standard deviations of these retention times were less than 0.4%. We used the optimal separation conditions of the RPLC system to study the effects that the rate of addition of the reducing agent and the volumes of the seed, shell precursor metal ion, and reducing agent solutions had on the sizes of the Au/Pt core/shell NPs. A good correlation existed between the sizes of the Au/Pt core/shell NPs determined through RPLC and those determined using transmission electron microscopy. RPLC appears to be a useful technique for monitoring the sizes of NPs and nanomaterials in general.  相似文献   

7.
We report that human mesenchymal stem cells (hMSCs) were successfully labeled with poly(lactide‐co‐glycolide) nanoparticles (PLGA NPs) surface‐conjugated quantum dots (QDs) (PLGA‐QD NPs) via endocytosis pathway. These NPs were not toxicity even treated with PLGA‐QD NPs at high concentrations for at least four weeks. Besides, PLGA‐QD NPs‐labeled hMSCs did not change their proliferation and differentiation capability toward the cell fates of adipocytes, osteocytes, and chrondrocytes. It's known that PLGA has been widely employed to act as delivery carrier which encapsulates drugs and releases them under a controlled way. Currently, we have also demonstrated that FITC‐loaded PLGA‐QD NPs degraded in hMSCs to achieve intracellular release of FITC. The aim of this research is to investigate viability, proliferation and differentiation capability and the potential for gene delivery of MSCs labeled with PLGA‐QD NPs. In addition to PLGA‐QD NPs, QDs alone were used to serve as a control set for comparison.  相似文献   

8.
This article reports on the peak shape analysis of X‐ray photoelectron spectra of gold‐silver core‐shell (Au@Ag) nanoparticles (NPs) using an asymmetric Gaussian–Lorentzian mixed function. Unlike Ag NPs, Au@Ag NPs have no oxide peak and show asymmetric line shape with a high energy tail in Ag 3d core‐level spectra. A monotonic increase in the Ag 3d binding energy and a decrease in the degree of asymmetry with increasing the Ag shell thickness were observed supporting the occurrence of charge transfer from Au core to Ag shell. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Plasmonic Au and magnetic Fe are coupled into uniform Au@Fe core–shell nanoparticles (NPs) to confirm that electron transfer occurred from the Au core to the Fe shell. Au NPs synthesized in aqueous medium are used as seeds and coated with an Fe shell. The resulting Au@Fe NPs are characterized by using various analytical techniques. X‐ray photoelectron spectroscopy and superconducting quantum interference device measurements reveal that the Fe shell of the Au@Fe NPs mainly consists of paramagnetic Wüstite with a thin surface oxide layer consisting of maghemite or magnetite. Electron transfer from the Au core to the Fe shell effectively suppresses iron oxidation from Fe2+ to Fe3+ near the interface between the Au and the Fe. The charge‐transfer‐induced electronic modification technique enables us to control the degree of iron oxidation and the resulting magnetic properties.  相似文献   

10.
Environmentally sensitive polysaccharide nanoparticles (NPs) were prepared by in situ polymerization of N-isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) micelles. First, CS was found to develop a cationic micelle-like structure in the acetic acid solution when its concentration was increased to above the critical micelle concentration, as evidenced by fluorescence and TEM. When the NIPAAm was polymerized in the CS micelle solution by using potassium persulfate as initiator, the produced PNIPAAm with anionic chain end(s) became hydrophobic, as long as the reaction temperature was above its phase transition temperature; and therefore it would diffuse into the hydrophobic core of the CS micelles, producing CS-PNIPAAm core–shell NPs. Increasing the feeding amount of NIPAAm increased the monomer conversion and therefore the particle size; yet it decreased the surface zeta potential. Moreover, the CS-PNIPAAm NPs were sensitive to both pH value and temperature. For the study of drug release properties, doxycycline hyclate was used as a model drug and loaded into the NPs at pH 4.5 and 25 °C. The result illustrated that these NPs had a continuous drug release behavior up to 1 week, depending on the pH value and temperature. In addition, enzyme or hydrogen peroxide capable of degrading CS shell was added in the solution to facilitate the drug release.  相似文献   

11.
This paper describes how size exclusion chromatography (SEC) can be used to rapidly characterize Au/Pd core/shell nanoparticles (NPs). We monitored the sizes of Au/Pd core/shell NPs by effecting SEC separation using a mobile phase of 10 mM sodium dodecyl sulfate (SDS); the plot of retention time with respect to the standard size of the Au NPs was linear (R 2 = 0.991) for diameters falling in the range from 12.1 to 59.9 nm; for five consecutive runs, the relative standard deviations of these retention times were less than 0.4%. Under the optimized separation conditions, we found that the addition of the surfactant SDS stabilized the Au/Pd core/shell NP samples. In addition, SEC analysis revealed that the sizes of the Au/Pd core/shell NPs could be controlled via modification of the rate of addition of the reducing agent and the use of adequate volumes of the seed and shell precursor metal ion solutions. When using these conditions to analyze the Au/Pd core/shell NPs produced through seed-assisted synthesis, a good correlation existed between the sizes determined through SEC and transmission electron microscopy. Our results suggest that SEC is a useful technique for monitoring the sizes of NPs and nanomaterials in general.  相似文献   

12.
A facile method was used to prepare hollow mesoporous TiO2 and Au@TiO2 spheres using polystyrene (PS) templates. Au nanoparticles (NPs) were simultaneously synthesized and attached on the surface of PS spheres by reducing AuCl4? ions using sodium citrate which resulted in the uniform deposition of Au NPs. The outer coating of titania via sol‐gel produced PS@Au@TiO2 core–shell spheres. Removing the templates from these core–shell spheres through calcination produced hollow mesoporous and crystalline Au@TiO2 spheres with Au NPs inside the TiO2 shell in a single step. Anatase spheres with double Au NPs layers, one inside and another outside of TiO2 shell, were also prepared. Different characterization techniques indicated the hollow mesoporous and crystalline morphology of the prepared spheres with Au NPs. Hollow anatase spheres with Au NPs indicated enhanced harvesting of visible light and therefore demonstrated efficient catalytic activity toward the degradation of organic dyes under the irradiation of visible light as compared to bare TiO2 spheres.  相似文献   

13.
Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) with surface modification of heparin were fabricated by microemulsion–diffusion method. These novel colloidal particles were stabilized by lecithin and Tween 80. The effects of lecithin on the loading of heparin onto PLGA NPs and on the surface conductance were analyzed. The electronic micrographs revealed that spherical colloids were prepared and the incorporation of heparin caused a slight coalescence of the particles. In addition, the average diameter of heparin-modified PLGA NPs was between 70 and 220 nm. An increase in the weight percentage of lecithin or in the concentration of heparin enlarged the average diameter. Based on constant amount of surfactants, the loading efficiency of heparin on the particle surfaces reached a maximum when the weight percentage of lecithin was 50%. Moreover, the surface conductance of heparin-modified PLGA NPs was improved by an increased weight percentage of lecithin. A high concentration of heparin in microemulsion also promoted the loading efficiency and surface conductance of heparin-modified PLGA NPs.  相似文献   

14.
PLGA/O-CMC载药纳米粒子的体外释药行为研究   总被引:2,自引:0,他引:2  
本文以聚乳酸-乙醇酸共聚物(PLGA)和自行制备的O-羧甲基壳聚糖(O-CMC)为原料,以5-氟尿嘧啶(5-FU)为抗癌药物模型,采用自身设计的改良复乳法制备了载药纳米微粒。微粒平均粒径为98.5nm,粒径分布指数为0.192,粒子表面∈电位为61.48eV,载药率高达18.9%,包封率为86%。然后用SEM动态监测载药纳米粒子降解过程中表面形貌的变化,并连续追踪粒子降解过程中的质量损失和降解介质的pH变化。载药纳米粒子在PBS中的释药行为研究表明:(1)前12h的释药动力学符合Huguchi方程,具有一级释放特性;(2)在20天内的释药动力学符合零级释放特性。  相似文献   

15.
QD-Au NP@silica mesoporous microspheres have been fabricated as a novel enzyme-mimic nanosensor. CdTe quantum dots (QDs) were loaded into the core, and Au nanoparticles (NPs) were encapsulated in the outer mesoporous shell. QDs and Au NPs were separated in the different space of the nanosensor, which prevent the potential energy or electron transfer process between QDs and Au NPs. As biomimetic catalyst, Au NPs in the mesoporous silica shell can catalytically oxidize glucose as glucose oxidase (GOx)-mimicking. The resultant hydrogen peroxide can quench the photoluminescence (PL) signal of QDs in the microsphere core. Therefore the nanosensor based on the decrease of the PL intensity of QDs was established for the glucose detection. The linear range for glucose was in the range of 5–200 μM with a detection limit (3σ) of 1.32 μM.  相似文献   

16.
Recent work regarding the Layer by Layer (LbL) engineering of poly(lactide-co-glycolide) nanoparticles (PLGA NPs) is reviewed here.The LbL engineering of PLGA NPs is applied as a means of generating advanced drug delivery devices with tailored recognition,protection,cargo and release properties.LbL in combination with covalent chemistry is used to attach PEG and folic acid to control cell uptake and direct it towards cancer cells.LbL coatings composed of chitosan and alginate show low protein interactions and can be used as an alternative to Pegylation.The assembly on top of LbL coatings of lipid layers composed of variable percentages of 1,2-dioleoyl-sn-glycero-3-choline (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoL-serine (DOPS) increases NP uptake and directs the NPs towards the endoplasmic reticulum.The antibody anti-TNF-α is encapsulated forming a complex with alginate that is assembled LbL on top of PLGA NPs.The antibody is released in cell culture following first order kinetics.The release kinetics of encapsulated molecules inside PLGA NPs are studied when the PLGA NPs are coated via LbL with different polyelectrolytes.The intracellular release of encapsulated Doxorubicin is studied in the HepG2 cell line by means of Fluorescence Lifetime Imaging.  相似文献   

17.
Triple‐layered Ag@Co@Ni core–shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04@Co0.48@Ni0.48 showed the most distinct core–shell structure. Compared with its bimetallic core–shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04@Co0.48@Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt–nickel double shells surrounding the silver core in the special triple‐layered core–shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells.  相似文献   

18.
Poloxamers are a family of polypropylene oxide (PPO) and polyethylene oxide (PEO) tri-block copolymers that are usually employed in the micro- and nanoparticulate engineering for drug delivery systems. The aim of this work is to study the electrophoretic mobility (mu(e)) and colloidal stability of complexes formed by adsorbing a poloxamer (Pluronic F68) onto poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles. A variety of stabilisation mechanisms have been observed for the Pluronic-coated PLGA nanoparticles, where DLVO interactions, solvent-polymer segment interactions and hydration forces play different roles as a function of the adsorbed amount of Pluronic. In addition, the mu(e) and stability data of these complexes have been compared to those obtained previously using a PLGA-Pluronic F68 blend formulation. As both the mu(e) and the stability data are identical between the two systems, a phase separation of both components in the PLGA-Pluronic blend formulation is suggested, being the PLGA located in the core of the particles and the Pluronic in an adsorbed shell.  相似文献   

19.
In order to encapsulate and controlled-release bioactive proteins,three fibrous membranes,i.e.,poly(L-lactide-co-glycolide)(PLGA),hybrid PLGA and chitosan(H-PLGA/CS),and core/shell PLGA/CS (C-PLGA/CS),were produced by emulsion electrospinning,co-electrospinning and coaxial electrospinning,respectively.Bovine serum albumin(BSA) was selected as a model protein.The loading efficiency of BSA in the PLGA membrane was 1.56%,lower than those of H-PLGA/CS(5.98%) and C-PLGA/CS(4.80%).BSA release profiles from the th...  相似文献   

20.
Nanodiamond–graphene core–shell materials have several unique properties compared with purely sp2‐bonded nanocarbons and perform remarkably well as metal‐free catalysts. In this work, we report that palladium nanoparticles supported on nanodiamond–graphene core–shell materials (Pd/ND@G) exhibit superior catalytic activity in CO oxidation compared to Pd NPs supported on an sp2‐bonded onion‐like carbon (Pd/OLC) material. Characterization revealed that the Pd NPs in Pd/ND@G have a special morphology with reduced crystallinity and are more stable towards sintering at high temperature than the Pd NPs in Pd/OLC. The electronic structure of Pd is changed in Pd/ND@G, resulting in weak CO chemisorption on the Pd NPs. Our work indicates that strong metal–support interactions can be achieved on a non‐reducible support, as exemplified for nanocarbon, by carefully tuning the surface structure of the support, thus providing a good example for designing a high‐performance nanostructured catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号